首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 写出f(x)在x—C处带拉格朗日型余项的一阶泰勒公式;
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 写出f(x)在x—C处带拉格朗日型余项的一阶泰勒公式;
admin
2018-11-11
48
问题
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.
写出f(x)在x—C处带拉格朗日型余项的一阶泰勒公式;
选项
答案
f(x)=f(c)+f’(c)(x-c)+[*](x-c)
2
,其中ξ介于c与x之间.
解析
转载请注明原文地址:https://jikaoti.com/ti/6nWRFFFM
0
考研数学二
相关试题推荐
设,则An=_________.
设矩阵其行列式|A|=一1,又A的伴随矩阵A*有一个特征值λ0,A*的属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c和λ0的值.
已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则()
设(x,y)是平面区域D={(x,y)|x|<1,|y|<1}上的随机点.求关于t的方程t2+xt+y=0有两个正实根的概率.
已知向量组(I)β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T与向量组(Ⅱ)α1=(1,2,一3)T,α2=(3,0,1)T,α3=(a,b,一7)T有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
设函数f(x)=如果f"(0)存在,求常数a,b.
求二重积分,其中D={(x,y)|0≤x≤2,0≤y≤2}.
设A为3阶矩阵,|A|=6,|A+E|=|A-2E|=|A+3E|=0,试判断矩阵(2A)*是否相似于对角矩阵,其中(2A)*是(2A)的伴随矩阵.
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
1由拉格朗日中值定理,得arctan(x+1)一arctanx=,ξ∈(x,x+1).且当x→+∞时,ξ→+∞因此原式=
随机试题
下列不属深感觉的是
DoesCharacterMatter?Doesthepersonalbehaviorofapublicofficial,especiallyournation’s【1】official,reallymakeadi
男性,自幼常发生黄疸,贫血检查证实为遗传性球形细胞增多症。治疗最好采用
A.驱虫药、攻下药B.安神药C.对胃肠道有刺激性的药D.截疟药E.以上都不是宜饭后服用的药是
学术评价中,往往交织着主客观的各种复杂因素。由于学术评价常受到评价主体学术观点、情感倾向、价值观等因素的影响,所以人们倾向于依靠量化数据进行评价。事实上,这类数据所包含的评价意义是由点击者、下载者、引用者体现出的,过度倚重这类数据就是把量化数据的制作者当成
一般来说,概念形成的阶段依次是
只有在一个社会范围内很多聚会在同一个时间开的时候,主人为吸引客人来参加聚会才买非常吸引人的请帖。一个生产漂亮请帖的公司坐落在洛杉矶,因此,洛杉矶的聚会一定非常多。如果有下面哪一个假设,上面的论述可以正确得出?
软件生命周期一般可以分为两个阶段,它们分别是
进程从运行状态进入就绪状态的原因是
Youshouldspendnomorethan20minutesonthistask.Youtravelledbyplanelastweekandyoursuitcasewaslost.Youh
最新回复
(
0
)