首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ).
设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ).
admin
2019-03-14
31
问题
设函数f(x,y)连续,则∫
1
2
dx∫
x
2
f(x,y)dy+∫
1
2
dy∫
y
4-y
f(x,y)dx=( ).
选项
A、∫
1
2
dx∫
1
4-x
f(x,y)dy.
B、∫
1
2
dx∫
x
4-x
f(x,y)dy
C、∫
1
2
dx∫
1
4-y
f(x,y)dy.
D、∫
1
2
dx∫
y
y
f(x,y)dy
答案
C
解析
∫
1
2
dx∫
x
2
f(x,y)dy+∫
1
2
dy∫
y
4-y
f(x,y)dx的积分区域为两部分(如图4—8):D
1
={(x,y)|1≤x≤2,x≤y≤2};D
2
={(x,y)|1≤y≤2,y≤x≤4一y},将其写成一个积分区域为D={(x,y)|1≤y≤2,1≤x≤4一y}.故二重积分可以表示为∫
1
2
dy∫
1
4-y
f(x,y)dx,故答案为C.
转载请注明原文地址:https://jikaoti.com/ti/6YWRFFFM
0
考研数学二
相关试题推荐
求In=sinnχdχ和Jn=cosnχdχ,n=0,1,2,3….
已知y1*=χeχ+e2χ,y2*=χeχ+eχ-χ,y3*=χeχ+e2χ-e-χ是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
求方程y〞+2my′+n2y=0的通解;又设y=y(χ)是满足初始条件y(0)=a,y′(0)=b的特解,求∫0+∞y(χ)dχ,其中,m>n>0,a,b为常数.
用Schmidt正交化方法将下列向量组规范正交化:α1=(1,1,1)T,α2=(-1,0,-1)T,α3=(-1,2,3)T.
设3阶矩阵A=,A-1XA=XA+2A,求X.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设x→a时f(x)与g(x)分别是x一a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x一a的n+m阶无穷小;②若n>m,则是x一a的n—m阶无穷小;③若n≤m,则f(x)+g(x)是x—a的n阶无穷小。
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解。
随机试题
下列关于下呼吸道描述不正确的是
能与碱反应呈红色的化合物是()。
(2015年综合题)居民企业甲公司主要从事日化产品的生产和销售,2014年有关涉税事项如下:(1)为了推广新型洗涤剂,公司推出了“买一赠一”的促销活动,凡购买一件售价40元(不含税)新型洗涤剂的,附赠一瓶原价10元(不含税)的洗洁精。公司按照每件40元确
下列哪一项不属于公安法制工作?()。
[A]Analyzingyourowntaste.[B]Beingcautiouswhenexperimenting.[C]Findingamodeltofollow.[D]Gettingt
tradebarrier
《论十大关系》总结了中国社会主义建设的经验,提出了调动一切积极因素为社会主义建设事业服务的基本方针,对适合中国情况的社会主义建设道路进行了初步的探索。毛泽东在《论十大关系》中论述中国工业化道路时指出
(1)创建一个名为“学生管理”的项目文件。(2)将考生文件夹下的数据库“班级学生”添加到新建的项目文件中。(3)打开数据库“班级学生”,将考生文件夹下的自由表“教师”添加到数据库“班级学生”中;为“教师”表创建一个索引名和索引表达式均为“教师编号”的主
Theastronomerwasnotinterestedinthewaydolphinscommunicatewitheachother.Soundscanbecalledalanguageonlywhenth
可见,不同于美国的电子书读者,中国的电子书读者并不是转投新媒介的传统购书者。
最新回复
(
0
)