首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设 (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
admin
2017-06-08
26
问题
设
(1)问k为何值时A可相似对角化?
(2)此时作可逆矩阵U,使得U
-1
AU是对角矩阵.
选项
答案
(1)求A的特征值: [*] 于是A的特征值为1(一重)和-1(二重). 要使A可对角化,只需看特征值-1.要满足3-r(A+E)=2,即r(A+B)=1, [*] 得k=0, [*] (2)求属于-1的两个线性无关的特征向量,即求(A+E)X=0的基础解系: [*] 得(A+E)X=0的同解方程组 2x
1
+x
2
-x
3
=0 得基础解系η
1
=(1,0,2)
T
,η
2
=(0,1,1)
T
. 求属于1的一个特征向量,即求(A-E)X=0的一个非零解: [*] 得(A-E)X=0的同解方程组 [*] 得解η
3
=(1,0,1)
T
. 令U=(η
1
,η
2
,η
3
),则 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/6QzRFFFM
0
考研数学二
相关试题推荐
[*]
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设f(x)在[0,1]上连续,取正值且单调减少,证明
设,证明fˊ(x)在点x=0处连续.
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
a为何值时y=ax2与y=lnx相切?
证明函数y=sinx-x单调减少.
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
随机试题
最可能的诊断是其最佳的替代药物是
"药品管理法"对开办药品经营企业的必备硬性条件是
胃大部切除术后四天,病人发生不含胆汁的频繁呕吐,可能是:
以下属于甲状腺癌的是()。
()的质量监理是设备质量监理的核心内容。
由造价工程师签字、加盖执业专用章和单位公章的工程造价成果文件可作为()的依据。
《红楼梦》一书,人物众多,关系复杂,散见于各章,鲁迅先生综合各章信息后,制作了一张主要人物关系表,这种学习策略属于()。
关于隐私权的正确表述是()。
Sheperseveredinherideasdespiteobviousobjectionsraisedbyfriends.
Thetelevisionwasreturnedbecauseofa______.
最新回复
(
0
)