设矩阵 求可逆矩阵P,使得pTA2P为对角矩阵.

admin2015-07-22  32

问题 设矩阵
求可逆矩阵P,使得pTA2P为对角矩阵.

选项

答案由|λE一A2|=0得A2的特征值为λ1=λ2=λ3=1,λ4=9. 当λ=1时,由(E-A2)X=0得α1=(1,0,0,0)T,α2=(0,1,0,0)T,α3=(0,0,一1,1)T; 当λ=9时,由(9E—A2)X=0得α4=(0,0,1,1)T.将α1,α2,α3正交规范化得β1=(1,0,0,0)T,β2=(0,1,0,0)T,β3=[*],将α4规范化得[*]. 令P=(β1,β2,β3,β4)=[*],则PTA2P=[*].

解析
转载请注明原文地址:https://jikaoti.com/ti/5kPRFFFM
0

最新回复(0)