首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: (1)A2; (2)A的特征值和特征向量; (3)A能否相似于对角阵,说明理由.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: (1)A2; (2)A的特征值和特征向量; (3)A能否相似于对角阵,说明理由.
admin
2018-04-18
49
问题
设向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,且满足条件α
T
β=0,记n阶矩阵A=αβ
T
,求:
(1)A
2
;
(2)A的特征值和特征向量;
(3)A能否相似于对角阵,说明理由.
选项
答案
(1)由A=αβ
T
和α
T
β=0,有 A
2
=AA=(αβ
T
)(αβ
T
)=α(β
T
α)β
T
=(β
T
α)αβ
T
=(α
T
β)αβ
T
=0, 即A是幂零阵(A
2
=O). (2)利用(1)A
2
=O的结果.设A的任一特征值为λ,对应于λ的特征向量为ξ,则 Aξ=λξ. 两边左乘A,得 A
2
ξ=λAξ=λ
2
ξ. 因A
2
=O,所以λ
2
ξ=0,ξ≠0,故λ=0即矩阵A的全部特征值为0. (3)A不能相似于对角阵,因α≠0,β≠0,故A=αβ
T
≠O,r(A)=r≠0(其实r(A)=1,为什么?).从而对应于特征值λ=0(n重)的线性无关的特征向量的个数是n一r≠n个,故A不能对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/5ddRFFFM
0
考研数学二
相关试题推荐
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
A、 B、 C、 D、 D
如果向量β可以由向量组α1,α2,…,αs线性表示,则().
设A=(Aij)n×n是正交矩阵,将A以行分块为A=(α1,α2,…αn)T,则方程组AX=b,b=(b1,…,bn)T的通解为________.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
随机试题
简析庄子《逍遥游》的论述思路。
设函数z=f(x,xy)+φ(x2+y2),其中函数f具有二阶连续偏导数,函数φ具有二阶连续导数,求.
Itisamazingthatasmallchildof3or4yearsofagecansingasongwithoutunderstandingitsmeaning______.
患者,男,60岁。因2小时前在参加登山比赛后突感心前区压榨性持续疼痛,伴大汗、头晕、恶心,向左后背及喉颈部放散,口含硝酸甘油3次,疼痛仍无明显缓解。既往有高血压5年,未用药控制,无糖尿病史,无烟酒嗜好,父母均有“冠心病”。查体:体温36.3℃,脉搏94次/
心动周期中,左心室内压急剧升高是在
下列句子中,没有语病的一项是()。
简述利用未公开信息交易罪与内幕交易罪的区别。
我国是()阶级领导的、以工农联盟为基础的(),国家一切权力属于人民。
设矩阵是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是矩阵A的伴随矩阵。试求a、b和λ的值。
Manyofthesedevelopmentsdrewontheexperienceoftherestoftheworld,ratherthanbeingconfinedwithintheboundariesof
最新回复
(
0
)