首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,B=且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
设A=,B=且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
admin
2019-08-23
37
问题
设A=
,B=
且A~B.
(1)求a;
(2)求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为A~B,所以tr(A)=tr(B),即2+a+0=1+(-1)+2,于是a=0. (2)由|λE-A|=[*]=(λ+1)(λ-1)(λ-2)=0 得A,B的特征值为λ
1
=-1,λ
2
=1,λ
3
=2. 当λ=-1时,由(-E-A)X=0即(E+A)X=0得ξ
1
=(0,一1,1)
T
; 当λ=1时,由(E-A)X=0得ξ
2
=(0,1,1)
T
; 当λ=2时,由(2E-A)X=0得ξ
3
=(1,0,0)
T
, 取P
1
=[*], 则P
1
-1
AP
1
=[*] 当λ=-1时,由(-E-B)X=0即(E+B)X=0得η
1
=(0,1,2)
T
; 当λ=1时,由(E-B)X=0得η
2
(1,0,0)
T
; 当λ=2时,由(2E-B)X=0得η
3
=(0,0,1)
T
, 取P
2
=[*], 则P
2
-1
BP
2
=[*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 令P=P
1
P
2
-1
=[*], 则P
-1
AP=B.
解析
转载请注明原文地址:https://jikaoti.com/ti/5FERFFFM
0
考研数学二
相关试题推荐
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设A是n阶正定矩阵,证明:|E+A|>1.
设f(x)在[0,1]上连续,且f(1)-f(0)=1.证明:
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anβ.
已知问λ取何值时,β不能由α1,α2,α3线性表出.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求可逆矩阵P,使得P-1AP=A.
随机试题
A.《山海经》 B.《五十二病方》C.《刘涓子鬼遗方》D.《金创瘈疭方》E.《世医得效方》
切断寄生虫的传播途径不包括
某男,18岁。寒战、高热,经细菌培养确诊为肺炎球菌性肺炎,来诊时青霉素皮试阴性,但静滴青霉素几分钟后即出现头昏、面色苍白、呼吸困难、血压下降等症状,诊断为青霉素过敏性休克,请问对该病人首选的抢救药物是
由两个维持阻塞型D触发器组成的电路如图(a)所示,设Q1Q2的初始态是00,已知CP脉冲波形,Q2的波形是图(b)中的()。
某城市轨道交通工程的工程监测等级为一级,对其工程主要影响区的地下管线的监测,其竖向位移监测点的间距宜为()。
下列对利率和利息理解正确的有()。
纳税人委托加工应税消费品,如果没有同类消费品销售价格,应按照组成计税价格计算应纳税额,计算公式为( )。
下列关于企业资源的表述中,正确的有()。(2010年改编)
甲企业生产经营用地分布于某市的三个地域,第一块土地的土地使用权属于某免税单位,面积6000平方米;第二块土地的土地使用权属于甲企业,面积30000平方米,其中企业办学校5000平方米,医院3000平方米;第三块土地的土地使用权属于甲企业与乙企业共同拥有,面
文艺不单是作者人格的表现,也是一般人生世相的返照。培养人格是一套工夫,对于一般人生世相积蓄丰富而正确的学识经验又是另一套工夫。这可以分两层说。一是读书。从前中国文人以能熔经铸史为贵。韩愈在《进学解》里发挥这个意思,最为详尽。读书功用在储知蓄理,扩充眼界改变
最新回复
(
0
)