首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. (1)求矩阵A的全部特征值; (2)求|A*+2E|.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. (1)求矩阵A的全部特征值; (2)求|A*+2E|.
admin
2019-04-22
40
问题
设A为三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三维线性无关的列向量,且
Aξ
1
=-ξ
1
+2ξ
2
+2ξ
3
,Aξ
2
=2ξ
1
-ξ
2
-2ξ
3
,Aξ
3
=2ξ
1
-2ξ
2
-ξ
3
.
(1)求矩阵A的全部特征值;
(2)求|A
*
+2E|.
选项
答案
(1)A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)[*],因为ξ
1
,ξ
2
,ξ
3
线性无关,所以(ξ
1
,ξ
2
,ξ
3
)可逆,故A~[*]=B. 由|λE-A|=|λE-B|=(λ+5)(λ-1)
2
=0,得A的特征值为-5,1,1. (2)因为|A|=-5,所以A
*
的特征值为1,-5,-5,故A
*
+2E的特征值为3,-3,-3. 从而|A
*
+2E|=27.
解析
转载请注明原文地址:https://jikaoti.com/ti/4DLRFFFM
0
考研数学二
相关试题推荐
设函数在x=0处连续,则a=__________.
若f(1+x)=af(x)总成立,且f’(0)=b.(a,b为非零常数)则f(x)在x=1处
抛物线y2=2x与直线y=x一4所围成的图形的面积为()
证明:用二重积分证明
设曲线y=,过原点作切线,求此曲线、切线及χ轴所围成的平面图形绕χ轴旋转一周所成的旋转体的表面积.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
求不定积分
f(χ1,χ2,χ3,χ4)=XTAX的正惯性指数是2,且A2=2A=O,该二次型的规范形为_______.
随机试题
关于滴虫性阴道炎,下列说法错误的是()
下列国家中安乐死合法化的是()
甲公司自1994年起其生产的衬衫上使用“娇月”商标;1996年,乙公司也开始使用“娇月”商标。乙公司1997年10月向工商行政管理局提出注册商标申请,1998年3月乙公司的“娇月”商标经国家商标局核准注册,其核定使用的商品为服装。1999年1月,乙公司发现
关于举证期限的确定,下列说法正确的是()。
国际代理实践中,在代理关系的成立及效力、当事人的权利义务、代理权的变更和终止等方面可能出现代理的法律冲突,则根据各国法律规定和司法实践,下列对代理法律适用表述正确的有哪些?()
根据《招标投标法实施条例》,投标保证金有效期截止日应当为()。
如图所示的平行板器件中,存在互相垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中线,紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B2=0.25
文人士大夫的墨竹墨梅在明代后期形成独特体系。()
清代时期,乾隆皇帝组织编撰了中国历史上最大的一部丛书()。
在平面直角坐标系中,直线经过Q(-2,-3)和R(4,1.5)两点。(1)求这条直线的斜率。(2)求这条直线的纵截距。(3)求这条直线的横截距。(4)判断点(10,8)是否在这条直线上。(5)判断直线y=-(4/3)x+9是否与这条直线垂直。(
最新回复
(
0
)