当x→0时下列无穷小是x的n阶无穷小,求阶数n: (I)ex4-2x2-1; (II)(1+tan2x)sinx-1; (Ⅲ) (Ⅳ)sint.sin(1-cost)2dt.

admin2019-07-19  47

问题 当x→0时下列无穷小是x的n阶无穷小,求阶数n:
(I)ex4-2x2-1;   
(II)(1+tan2x)sinx-1;
(Ⅲ)   
(Ⅳ)sint.sin(1-cost)2dt.

选项

答案(I)ex4-2x2-1~x4-2x2~-2x2(x→0),即当x→0时ex4-2x2-1是x的2阶无穷小,故n=2. (II)(1+tan2x)sinx-1~ln[(1+tan2x)sinx-1+1] =sinxln(1+tan2x)~sinxtan2x~x.x2=x3(x→0), 即当x→0时(1+tan2x)sinx-1是x的3阶无穷小,故n=3. (Ⅲ)由1-[*]是x的4阶无穷小,即当x→0时[*]是x的4阶无穷小,故n=4. (Ⅳ) [*] 即当x→0时[*]sintsin(1-cost)2dt是x的6阶无穷小,故n=6.

解析
转载请注明原文地址:https://jikaoti.com/ti/0hQRFFFM
0

最新回复(0)