设y=y(x)由x3+3x2y-2y3=2确定,求y=y(x)的极值.

admin2019-06-06  33

问题 设y=y(x)由x3+3x2y-2y3=2确定,求y=y(x)的极值.

选项

答案x3+3x2y-2y3=2两边对x求导得3x2+6xy+3x2y-6y2y=0.[*]两边再对x求导得6x+6y+12xy+3x2y’’-12yy’2-6y2y’’=0.x=0时,y’’(0)=﹣1,x=0为极大值点,极大值为y=﹣1;x=﹣2时,y’’(﹣2)=﹣l,为y=y(x)的极小值点,极小值为y=1.

解析
转载请注明原文地址:https://jikaoti.com/ti/0OnRFFFM
0

最新回复(0)