设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_______.

admin2018-05-21  30

问题 设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_______.

选项

答案1

解析 因为A为实对称矩阵,所以不同特征值对应的特征向量正交,因为AX=0及(A+E)X=0有非零解,所以λ1=0,λ2=-1为矩阵A的特征值,α1=(a,-a,1)T,α2=(a,1,1-a)T是它们对应的特征向量,所以有α1Tα2=a2-a+1-a=0,解得a=1.
转载请注明原文地址:https://jikaoti.com/ti/0FVRFFFM
0

相关试题推荐
最新回复(0)