设函数f(x)在[0,+∞)上可导,f(a)=0且=2,证明: (Ⅰ)存在a>0,使得f(a)=1; (Ⅱ)对(Ⅰ)中的a,存在ξ∈(0,a),使得f’(ξ)=

admin2017-01-21  35

问题 设函数f(x)在[0,+∞)上可导,f(a)=0且=2,证明:
(Ⅰ)存在a>0,使得f(a)=1;
(Ⅱ)对(Ⅰ)中的a,存在ξ∈(0,a),使得f’(ξ)=

选项

答案(Ⅰ)设F(x)=f(x)—1,x≥0。 因为[*](0,+∞),使得F(a)=0,即f(A)=1。 (Ⅱ)函数在[0,a]上连续,在(0,a)内可导,由拉格朗日中值定理,存在ξ∈(0,a)使得 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/zySRFFFM
0

最新回复(0)