首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3=4x22一3x32+4x1x2—4x1x3+8x2x3。 用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
已知二次型f(x1,x2,x3=4x22一3x32+4x1x2—4x1x3+8x2x3。 用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
admin
2018-02-07
53
问题
已知二次型f(x
1
,x
2
,x
3
=4x
2
2
一3x
3
2
+4x
1
x
2
—4x
1
x
3
+8x
2
x
3
。
用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
选项
答案
矩阵A的特征多项式为 |λE—A|=[*]=(λ—1)(λ一6)(λ+6), 矩阵A的特征值为λ
1
=1,λ
2
=6,λ
3
=一6。 由(λ
i
E—A)x=0(i=1,2,3)解得特征值λ
1
=1,λ
2
=6,λ
3
=一6对应的特征向量分别为 α
1
=(一2,0,1)
T
,α
2
=(1,5,2)
T
,α
3
=(1,一1,2)
T
, 由于实对称矩阵的属于不同特征值的特征向量正交,所以可直接将α
1
,α
2
,α
3
单位化,即 [*] 且二次型x
T
Ax在正交变换x=Qy下的标准形为f=y
1
2
+6y
2
2
一6y
3
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/zxdRFFFM
0
考研数学二
相关试题推荐
下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ε
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
随机试题
毛果芸香碱滴眼后可引起()
下列关于盈亏平衡点的表述中,错误的是()。
借款人申请贷款展期时,向银行提交的展期申请内容包括()。
()是一种比较有名的工作方法,可以帮助负责培训的人员安排各项培训活动的先后次序。
阅读下列三个材料,按要求完成任务。材料一《普通高中化学课程标准(实验)》【内容标准】认识化石燃料综合利用的意义,了解甲烷、乙烯、苯等的主要性质,认识乙烯、氯乙烯、苯的衍生物等在化工生产中的重要作用。【活动建议】①查阅资料:利用
随着《新税收改革法令》的通过,低收入纳税人每年将平均减少100元到300元的财税负担。所以,税收改革有益于低收入纳税人。以下哪项如果为真,最能削弱上述结论?()
简述制定管理制度规范的基本要求。
Confucius—astatesman,scholar,and(educator)of(greatskill)andreputation-isgenerallyheldtobeChina’s(greatest)andmo
下列关于SQL命令的叙述中,正确的是()。
Heenteredtheclassroomwith______steps.
最新回复
(
0
)