设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3. (1)求矩阵A的全部特征值; (2)求|A*+2E|.

admin2016-10-13  62

问题 设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且
    Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3
(1)求矩阵A的全部特征值;
(2)求|A*+2E|.

选项

答案(1)A(ξ1,ξ2,ξ3)=(ξ1,ξ2,ξ3)[*],因为ξ1,ξ2,ξ3线性无关,所以(ξ1,ξ2,ξ3)可逆,故A~[*]=B. 由|λE一A|=|λE一B|=一(λ+5)(λ一1)2=0,得A的特征值为一5,1,1. (2)因为|A|=一5,所以A*的特征值为1,一5,一5,故A*+2E的特征值为3,一3,一3. 从而|A*+2E|=27.

解析
转载请注明原文地址:https://jikaoti.com/ti/zvwRFFFM
0

最新回复(0)