首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y),φ(x,y)在点P0(x0,y0)的某邻域有连续的一阶偏导数且φ’y(x0,y0)≠0.若P0(x0,y0)是二元函数z=f(x,y)在条件φ(x,y)=0下的极值点,则 证明条件极值点的必要条件,并说明几何意义.
设f(x,y),φ(x,y)在点P0(x0,y0)的某邻域有连续的一阶偏导数且φ’y(x0,y0)≠0.若P0(x0,y0)是二元函数z=f(x,y)在条件φ(x,y)=0下的极值点,则 证明条件极值点的必要条件,并说明几何意义.
admin
2020-03-16
47
问题
设f(x,y),φ(x,y)在点P
0
(x
0
,y
0
)的某邻域有连续的一阶偏导数且φ’
y
(x
0
,y
0
)≠0.若P
0
(x
0
,y
0
)是二元函数z=f(x,y)在条件φ(x,y)=0下的极值点,则
证明条件极值点的必要条件,并说明几何意义.
选项
答案
由所设条件,φ(x,y)=0在x=x
0
的某邻域确定隐函数y=y(x)满足y
0
=y(x
0
),于是P
0
(x
0
,y
0
)是z=f(x,y)在条件φ(x,y)=0下的极值点[*]z=f(x,y(x))在x=x
0
取极值 [*]f’
x
(x
0
,y
0
)+f’
y
(x
0
,y
0
)y’(x
0
)=0. ① 又由φ(x,y(x))=0,两边求导得 φ’
x
(x
0
,y
0
)+φ’
y
(x
0
,y
0
)y’(x
0
)=0,解得y’(x
0
)=-φ’
x
(x
0
,y
0
)/φ’
y
(x
0
,y
0
). ② 将②式代入①式得f’
x
(x
0
,y
0
)-f’
y
(x
0
,y
0
)φ’
x
(x
0
,y
0
)/φ’
y
(x
0
,y
0
)=0. 因此 [*] 在Oxy平面上看,φ(x,y)=0是一条曲线,它在P
0
(x
0
,y
0
)的法向量是(φ’
x
(P
0
),φ’
y
(P
0
)),而f(x,y)=f(x
0
,y
0
)是一条等高线,它在P
0
的法向量是(f’
x
(P
0
),f’
y
(P
0
)),(7.9)式表示这两个法向量平行,于是曲线φ(x,y)=0与等高线f(x,y)=f(P
0
)在点P
0
处相切.
解析
转载请注明原文地址:https://jikaoti.com/ti/zeARFFFM
0
考研数学二
相关试题推荐
[2003年]设位于第一象限的曲线y=f(x)过点(√2,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.求曲线y=f(x)的方程;
设f(u,υ)具有二阶连续偏导数,且满足fu’(u,υ)+fυ’(u,υ)=uυ,求y=e一2xf(x,x)所满足的一阶微分方程,并求其通解.
[*]
设f(x)具有二阶导数,且f"(x)>0.又设u(t)在区间[0,a](或[a,0])上连续,试证明:.
求解下列方程.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
设f(x)连续可导,f(0)=0,f’(0)≠0,F(x)=(x2-t2)f(t)dt,且当x→0时,F’(x)与xk为同阶无穷小,求k.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为.试求y=f(x)所满足的微分方程,并求该方程满足条件的解.
已知平面曲线Ax2+2Bxy+Cy2=1(C>0,AC-B2>0)为中心在原点的椭圆,求它的面积.
设求函数F(x)=∫-1xf(t)dt的表达式.
随机试题
下列无穷积分收敛的是().
关于CETP功能叙述不正确的是
脾囊肿急性肝炎
患者,男,32岁。患肺炎球菌肺炎已1周,现低热夜甚,干咳少痰,五心烦热,神疲纳差,舌红少苔,脉细数。其证型是()
南京国民政府解释宪法和法律的机构是()。
产生水土流失的基本动力是()。
下列各项中,属于固定资产减值迹象的有()。
勤王运动
情景:民华中学初三(2)班的郑光明同学因患肺炎住院,耽误了很多功课,同班同学赵晓亮在郑光明出院后每天晚上去他家给他补课,整整坚持了一个月,直到为郑光明同学补上所有落下的功课。请你以郑光明的妈妈的名义给民华中学的校领导写一封表扬信,建议学校领导对赵晓亮同学给
OnNovember5th1605,abandofEnglishCatholichotheadsplannedtodetonate36barrelsofgunpowderundertheHouseofLords.
最新回复
(
0
)