首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
admin
2018-02-07
33
问题
确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示。
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
)。因为β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,所以r(A)<3(若r(A)=3,则任何三维向量都可以由α
1
,α
2
,α
3
线性表示),从而 |A|=[*]39=一(a+2)(a一1)
2
=0, 即a=一2或1。 当a=一2时, (B,A)=[*]40 考虑线性方程组Bx=α
2
。因为系数矩阵的秩为2,增广矩阵的秩为3,所以线性方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表出,这与题中的已知条件矛盾,故a=一2不合题意。当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,则α
1
=α
2
=α
3
=β
1
+0.β
2
+0.β
3
,说明α
1
,α
2
,α
3
,可由β
1
,β
2
,β
3
线性表示;而方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解(系数矩阵的秩为1,增广矩阵的秩为2),所以β
2
不能由α
1
,α
2
,α
3
线性表示。故a=1符合题意。
解析
转载请注明原文地址:https://jikaoti.com/ti/zKdRFFFM
0
考研数学二
相关试题推荐
[*]
U的分布函数为G(u)=P{U≤u}=P{X+Y≤u}=P{X+Y≤u,X=1}+P{X+Y≤u,X=2}=P{X+Y≤u|X=1}P{X=1}+P{X+Y≤u|X=2}P{X=2}=P{Y≤u-1|X=1}P
函数e-|x|的一个原函数F(x)=().
A、0<p≤1时条件收敛B、0<p≤1时绝对收敛C、p>1时条件收敛D、0<p≤1时发散A
证明下列函数在(-∞,+∞)内是连续函数:(1)y=3x2+1(2)y=cosx
证明曲线y=x4-3x2+7x-10在x=1与x=2之间至少与x轴有—个交点.
不等式的解集(用区间表示)为[].
求下列极限:
微分方程y"-4y=e2x的通解为________.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
随机试题
用于在计算机内部存储、处理汉字的编码称为汉字________。
A.青霉素GB.头孢氨苄C.林可霉素D.链霉素E.四环素治疗斑疹伤寒,应首选
支气管扩张的典型痰液表现为
今年夏天,某沿海地区的甲肝患者数明显超过历年能散发发病率水平,则认为该病
计算机能够直接执行的计算机语言是()。
()是指税务机关依照有关法律、法规的规定,按照一定的程序,核定纳税人在一定经营时期内的应纳税经营额及收益额,并以此为计税依据,确定其应纳税额的一种税款征收方式。
公司型基金的参与主体主要为()。
简述奥苏伯尔学习情境中的学习动机理论。
根据以下情境材料,回答以下问题。2016年9月,某市公安机关为了深化社区警务建设,组织全市公安派出所领导和社区民警在市警校进行了为期一个月的以“社区警务发展与社区治理创新”为主题的学习培训。培训内容包括社区的性质、构成要素、功能、文化、组织形式、
A、15.B、Morethan70.C、39.D、32C
最新回复
(
0
)