(1)求∫0x2xf(x-t)dt. (2)设,求df(x)|x=1. (3)设F(x)=∫0xdy∫0y2 ,求F’’(x).

admin2019-09-04  12

问题 (1)求0x2xf(x-t)dt.
(2)设,求df(x)|x=1
(3)设F(x)=∫0xdy∫0y2 ,求F’’(x).

选项

答案(1)由∫0x2xf(x-t)dt=x∫0x2f(x-t)dt[*]x∫0x-x2f(u)(-du)=x∫x-x2xf(u)du得 [*]∫0x2xf(x-t)dt=∫x-x2xf(u)du+x[f(x)-(1-2x)f(x-x2)]. (2)由f(x)=[*]=xex得 f’(x)=(x+1)ex,从而f’(1)=2e,故df(x)|x=1=2edx. (3)F’(x)=∫0x2[*]dt,F’’(x)=[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/yTiRFFFM
0

最新回复(0)