首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设函数f(u)可导,y=f(x2).当自变量x在x=一1处取得增量Δx=一0.1时,相应的函数增量Δy的线性主部为0.1,则f'(1)=( ).
[2002年] 设函数f(u)可导,y=f(x2).当自变量x在x=一1处取得增量Δx=一0.1时,相应的函数增量Δy的线性主部为0.1,则f'(1)=( ).
admin
2021-01-19
74
问题
[2002年] 设函数f(u)可导,y=f(x
2
).当自变量x在x=一1处取得增量Δx=一0.1时,相应的函数增量Δy的线性主部为0.1,则f'(1)=( ).
选项
A、一1
B、0.1
C、1
D、0.5
E、
答案
D
解析
Δy的线性主部就是y=f(x)的微分dy=f'(x)dx,而y=f(x
2
)的微分为
dy=f'(x
2
)d(x
2
)=f'(x)·2x dx.
因Δy=y'Δx+o(Δx),其中y'Δx称为Δy的线性主部.即y的微分dy=y'(x)dx为Δy的线性主部.对y=f(x
2
)求微分,利用一阶微分形式不变性得到
dy=df(x
2
)=f'(x
2
)dx
2
=2xf′(x
2
)dx.
由题设有x=一1,dx=Δx=一0.1,dy=0.1,将它们代入上式得到0.1=2(-1)f′[(-1)
2
](一0.1), 即 f′(1)=0.5.
转载请注明原文地址:https://jikaoti.com/ti/y9ARFFFM
0
考研数学二
相关试题推荐
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=__________.
设A为n阶可逆矩阵(n≥2),则[(A*)*]-1=_______(用A*表示).
证明极限不存在.
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。根据t时刻液面
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
设则下列函数在x=0处间断的是()
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[-2,0)上的表达式;
本题满分11分。
随机试题
电磁换向阀易实现远距离操纵和自动化控制。()
根治间日疟和控制疟疾传播的首选药治疗恶性疟的首选药
治疗湿温病浊邪蒙蔽清窍之神志不清适宜选用的最佳配伍药物是
大便夹有不消化的食物,酸腐臭秽者,多因
水利工程施工分包中,承包人将其承包工程中的劳务作业发包给其他企业或组织完成的活动称为()。
工程中间交接应完成的内容有()。
戊公司某年有关损益类科目的年末结账前余额如下:主营业务收入:900万元主营业务成本:400万元营业税金及附加:15万元销售费用:75万元管理费用:50万元财务费用:5万元其他资料如下:(1)年末一次性结转损益类科目。(2)适用的所得税税率
下列各项中,不应计提固定资产折旧的是()。
设g(x)=∫0xf(u)du,其中f(x)=则g(x)在(0,2)内().
y=sin2,则y’=________.
最新回复
(
0
)