f(x)在[0,1]上连续,(0,1)内可导,证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1—ξ-1)f(ξ)

admin2015-08-14  37

问题 f(x)在[0,1]上连续,(0,1)内可导,证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1—ξ-1)f(ξ)

选项

答案令F(x)=xe-xf(x),因f(1)=[*]xe1-xf(x)dx=ηe1-ηf(η),[*]F(1)=e-1f(1)=ηef(η)=F(η),故在[η,1][*][0,1]上,对F(x)运用罗尔定理,可得ξ∈(η,1)[*](0,1),使f’(ξ)=(1一ξ-1)f(ξ).

解析
转载请注明原文地址:https://jikaoti.com/ti/y1DRFFFM
0

最新回复(0)