首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
admin
2017-05-31
39
问题
设f(x),g(x)在x=x
0
某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x
0
,y
0
)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x
0
)
2
)(x→x
0
).
选项
答案
相交与相切即f(x)=g(x
0
),f’(x
0
)=g’(x
0
).若又有曲率相同,即 [*] 由二阶导数的连续性及相同的凹凸性得,或f"(x
0
)=g"(x
0
)=0或f"(x
0
)与g"(x
0
)同号,于是 f"(x
0
)=g"(x
0
).因此,在所设条件下,曲线y=f(x),y=g(x)在(x
0
,y
0
)处相交、相切且有相同曲率 <=> f(x
0
)-g(x
0
)=0,f’(x
0
)-g’(x
0
)=0,f"(x
0
)-g"(x
0
)=0. <=> f(x)-g(x)=f(x
0
)-g(x
0
)+[*] =o((x-x
0
)
2
) (x→x
0
). 即当x→x
0
时f(x)-g(x)是比(x-x
0
)
2
高阶的无穷小.
解析
转载请注明原文地址:https://jikaoti.com/ti/xwzRFFFM
0
考研数学二
相关试题推荐
设函数f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若∫0f(x)g(t)dt=x2ex,求f(x).
设y=f(x)为区间[0,1]上的非负连续函数.证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积.
过曲线y=x2(x≥0)上某点作切线,使该曲线、切线与z轴所围成图形的面积为1/12,求切点坐标、切线方程,并求此图形绕x轴旋转一周所成立体的体积.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
求下列极限:
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
(2000年试题,一)设E为四阶单位矩阵,且B=(E+A)-1(E—A),则(E+B)-1=___________.
已知f(x)=ax3+x2+2在x=0和x=一1处取得极值,求f(x)的单调区间、极值点和拐点.
随机试题
()是指通过各种通讯方式,不通过集中的交易所,实行分散的、一对一交易的衍生工具。
通过鸟氨酸循环生成尿素时,其分子中的两个氮原子一个直接来自游离的氨,另一个直接来源于
[2011年第68题]依法必须进行工程设计招标的项目,其评标委员会由招标人的代表和有关技术、经济等方面的专家组成,成员人数为:
同心球形电容器,两极的半径分别为R1和R2(R2>R1),中间充满相对介电系数为εr的均匀介质,则两极间场强的分布曲线为下列哪个图所示?
建筑石膏初凝和终凝时间都很短,为便于使用,需加入缓凝剂。常用的缓凝剂包括()。
证券公司应当将证券经纪人的职业行为纳入公司合规管理范围,并建立科学管理的证券经纪人(),将经纪人执业行为的合规性纳入其绩效考核范围。
补充登记法主要适用于()。
2008年3月15日,洪海市雅居房地产公司合法取得位于该市区的能够进行商品房开发#3地块的土地使用权。2009年3月。该公司在#3地块上开发出“海滨雅居”并进行销售。甲花费60万元在“海滨雅居”购得一套住房。人住使用后,甲发现房屋由于设计错误存在严重的结构
______deliveredhisworld-famousspeechGettysburgAddressduringtheCivilWar.
【R1】______________.Socankidswithasthmaplaysports?Youbettheycan!Beingactiveandplayingsportsisanespeciallygood
最新回复
(
0
)