首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f’+(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f’+(0)
admin
2017-01-14
22
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f’
+
(0)存在,且f’
+
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)-f(a)-[*](x-a),易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得至少有一点ξ∈(a,b),使φ’(ξ)=0,即 [*] 所以f(b)-f(a)=f’(ξ)(b-a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可知,存在[*](0,δ),使得 [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://jikaoti.com/ti/xawRFFFM
0
考研数学一
相关试题推荐
[*]
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
求下列递推公式(n为正整数):
设A是m×n矩阵,B是,n×m矩阵,则
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
由题设,根据行列式的定义和数学期望的性质,有[*]
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_______.
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x0,y0)处相切是指它们在(x0,y0处有共同切线),求a,b的值.
将函数f(x)=展开成x-1的幂级数,并指出其收敛区间.
随机试题
市场营销的特征是什么?
无密码子的氨基酸是
等渗性缺水的处理原则为()。
患者,女,32岁。因甲状腺功能亢进症口服卡比马唑治疗,在服药过程中突然出现寒战、高热、咽痛而就诊。体检:体温40℃。咽红,扁桃体Ⅱ度肿大,有溃烂,甲状腺Ⅱ度肿大,心率140次/分。化验:Hb110g/L,白细胞10.8×109/L,血小板103×109
万古霉素抗菌机制正确的是
A.调剂B.处方审核C.安全用药指导D.擅自更改E.四查十对具有药师以上药学专业技术职务任职资格的人员负责处方审核、评估、核对、发药以及()
某工程时标网络图如下,说法正确的是( )。
税款征收的方式包括()。
(2000年考试真题)甲公司为增值税一般纳税人,1999年11月30日的科目余额表如表2—7—5所示.注:①”长期债权投资”科目余额中将于一年内到期的有15000元。②“预提费用”科目余额7840元,为预提的固定资产大修费用。甲公司12月份有关资料如下
社会治安综合治理的意义是()。
最新回复
(
0
)