首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;
admin
2018-08-03
14
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求矩阵B,使A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]B;
选项
答案
由题设条件,有 A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
]=[α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
] =[α
1
,α
2
,α
3
][*] 所以,B=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/xV2RFFFM
0
考研数学一
相关试题推荐
设随机变量X的密度函数为f(x)=,则E(X)=___________,D(X)___________.
设A,B为两个n阶矩阵,下列结论正确的是().
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ—η=(ea+eb)[f’(η)+f(η)].
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设向量组α1,α2,…,αn—1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=.(1)求点M,使得L在M
设a0=1,a1=一2,a2=(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:(Ⅰ)常数K1,K2的值;(Ⅱ)Xi,Yi(i=1,2)的边缘概率密度;(Ⅲ)P{Xi>2Yi}(i=1,2).
已知λ=12是A=的特征值,则a=_________;
随机试题
在决策的最后阶段,还必须加强
甲、乙双方签订的施工合同中约定,合同发生争议由仲裁委员会裁决,但未约定仲裁委员会的名称,后来双方对仲裁委员会的选定也未达成一致意见,则该仲裁协议()。
我国货币政策的中介目标是货币供应量,通常所说的M0不包括()。
凡具有高级中学、中等专业学校或以上学历,身体健康,具有适应导游需要基本知识和语言表达能力的中华人民共和国公民才可参加导游资格考试。()
读“亚洲地区图”,完成下列各题。数字①代表________半岛;③________国家。
教育法律救济以补救受害者的合法权益为根本目的。()
以下程序的功能是单击Command1按钮,将输出1~100之间的所有同构数。同构数是指该数出现在它的平方数的右边,如52=25、252=625。PrivateSubCommand1_Click()DimiAsInteger,
在过程定义中有语句:PrivateSubGetData(ByValdataAsInteger)其中“ByVal”的含义是()。
A、InBoston.B、inConcord.C、InLexington.D、InBritain.A
A、OnthetopofMountKenya.B、NearMountKenya.C、NearTanaRiver.D、OntheEastAfricaplateau.B
最新回复
(
0
)