首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
admin
2021-11-25
24
问题
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
。 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,β
3
=ξ
3
+η
0
,...,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,...,β
n-r
为方程组AX=b的一组解。 令k
0
β
0
+k
1
β
1
+k
2
β
2
+...+k
n-r
β
n-r
=0,即 (k
0
+k
1
+...+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0 上式两边左乘A得(k
0
+k
1
+...+k
n-r
)b=0 因为b为非零列向量,所以k
0
+k
1
+...+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0 注意到ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
线性无关,所以k
1
=k
2
=...=k
n-r
=0 故β
0
,β
1
,β
2
,...,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组。 设β
1
,β
2
,...,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,...,γ
n-r+1
=β
n-r+2
-β
1
根据定义,易证γ
1
,γ
2
,...,γ
n-r+1
线性无关,又γ
1
,γ
2
,...,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾。 所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个。
解析
转载请注明原文地址:https://jikaoti.com/ti/x0lRFFFM
0
考研数学二
相关试题推荐
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
设矩阵B的列向量线性无关,且BA=C,则()。
(Ⅰ)求积分f(t)=(—∞<t<+∞).(Ⅱ)证明f(t)在(—∞,+∞)连续,在t=0不可导.
函数f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1)=1,证明:(Ⅰ)存在c∈(0,1),使得f(c)==2。
设实对称矩阵A=要使得A的正,负惯性指数分别为2,1,则a满足的条件是_________.
设A是n阶矩阵,E+A可逆,其中E是n阶单位矩阵.证明:(Ⅰ)(E—A)(E+A)-1=(E+A)-1(E—A);(Ⅱ)若A是反对称矩阵,则(E一A)(E+A)-1是正交矩阵;(Ⅲ)若A是正交矩阵,则(E—A)(E+A)-1是
(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明AB和BA有相同的特征值,且AB~BA;(Ⅱ)对一般的n阶矩阵A,B,证明AB和BA有相同的特征值,并请问是否必有AB~BA?说明理由.
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
证明:矩阵Q可逆的充要条件为αTA-1α≠b.
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
随机试题
王羲之擅长书法,少从卫夫人(铄)学书法,后草书学张芝,正书学钟繇,博采众长,精研体势,一变汉魏以来波挑用笔,独创圆转流利之风格,隶、草、正、行各体皆精,被奉为“书圣”。其作品()被称为“天下第一行书”。
分泌胃泌素的细胞是分泌胃蛋白酶原的细胞是
A.肉芽组织增生B.肉芽肿形成C.纤维组织增生D.纤维素渗出E.黏膜上皮及间质增生淋巴结结核
探亲避孕药的避孕机制中,哪项错误
诊断消化性溃疡并发幽门梗阻最有价值的临床表现是
血清白蛋白和球蛋白的比值(A/G)减少可见于下列哪些疾病()。
根据企业会计制度的规定,我国企业资产负债表的格式采用()。
在生活和工作中经常需要进行估测,以下估测比较接近实际的是()。
任何事物都包含肯定和否定两个方面,唯物辩证法认为()
Inthishypercompetitiveeconomy,theoldrulesformanagingjustdon’tcutit.Whatcountsnowisinnovativethinking—atatime
最新回复
(
0
)