设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a). 已知函数g(x)具有性质

admin2019-06-01  18

问题 设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.

选项

答案由题设知,g(x)的导函数g'(x)=h(x)(x2-2x+1),其中函数h(x)>0对于任意的x∈(1,+∞)都成立,所以,当x>1时,g'(x)=h(x)(x-1)2>0,从而g(x)在区间(1,+∞)上单调递增. ①当m∈(0,1)时,有a=mx1+(1-m)x2>mx1+(1-m)x1=x1,a<mx2+(1-m)x2=x2,得α∈(x1,x2),同理可得β∈(x1,x2),所以由g(x)的单调性知g(α),g(β)∈(g(x1),g(x2)),从而有∣g(α)-g(β)∣<∣g(x1)-g(x2)∣,符合题设. ②当m≤0时,α=mx1+(1-m)x2≥mx2+(1-m)x2=x2,β=(1-m)x1+mx2≤(1-m)x1+mx1=x1,于是由α>1,β>1及g(x)的单调性知g(β)≤g(x1)<g(x2)≤g(α),所以∣g(α)-g(β)∣≥∣g(x1)-g(x2)∣,与题设不符. ③当m≥1时,同理可得α≤x1,β>x2,进而得∣g(α)-g(β)∣≥∣g(x1)-g(x2)∣,与题设不符. 因此,综合①、②、③得所求的m的取值范围为(0,1).

解析
转载请注明原文地址:https://jikaoti.com/ti/wom4FFFM
0

相关试题推荐
最新回复(0)