首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。 (Ⅰ)求齐次线性方程组(A一6E)x=0的通解; (Ⅱ)求正交变换x=Qy将二次型XTAX化为标准形; (Ⅲ)求(A一3E)100。
设A为3阶实对称矩阵,是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。 (Ⅰ)求齐次线性方程组(A一6E)x=0的通解; (Ⅱ)求正交变换x=Qy将二次型XTAX化为标准形; (Ⅲ)求(A一3E)100。
admin
2019-11-02
25
问题
设A为3阶实对称矩阵,
是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。
(Ⅰ)求齐次线性方程组(A一6E)x=0的通解;
(Ⅱ)求正交变换x=Qy将二次型X
T
AX化为标准形;
(Ⅲ)求(A一3E)
100
。
选项
答案
(Ⅰ)首先,因为矩阵A-6E不可逆,所以λ=6是矩阵A的一个特征值;其次,因为[*]是齐次线性方程组Ax=0的基础解系,所以λ=0是矩阵A的二重特征值,所以A的特征值为0,0,6。齐次线性方程组(A-6E)x=0的通解是矩阵A的属于特征值λ=6的特征向量。因为A为3阶实对称矩阵,从而属于不同特征值的特征向量正交。设[*]是矩阵A的属于特征值λ=6的一个特征向量,则[*]解得[*],所以齐次线性方程组(A-6E)x=0的通解为[*]为任意常数。 (Ⅱ)下面将向量组[*]正交化。令 [*] 下面将向量组β
1
β
2
β
3
单位化。令 [*] 令 [*] 则二次型x
T
Ax在正交变换x=Qy,下的标准形为[*] (Ⅲ) [*] 所以 [*]
解析
本题考点较为综合,包括特征值的定义、基础解系所含向量个数与系数矩阵秩之间的关系、实对称矩阵特征向量的正交性、矩阵的相似对角化以及方阵的幂的计算。
转载请注明原文地址:https://jikaoti.com/ti/wmCRFFFM
0
考研数学一
相关试题推荐
求微分方程y2dx+(2xy+y2)dy=0的通解.
设函数,证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设二次型f(x1,x2,x3)=x12+4x22+2x32+2tx1x2+2x1x3为正定二次型,求t的范围.
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫abf(x)dx一(b一a)f(a)|≤(b一a)2.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.
设随机变量X和Y独立,并且都服从正态分布N(μ,σ2),求随机变量Z=min(X,Y)的数学期望.
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分。
试讨论n维向量α1,α2,…,αs的线性相关性,其中αi=(1,ai,ai2,…,ain-1)T,i=1,2,…,s.
在最简单的全概率公式P(B)=P(A)P(B|A)+P(A)P(B|A)中,要求事件A与B必须满足的条件是
(1989年)设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问当R取何值时.球面∑在定球面内部的哪部分面积最大?
随机试题
导致头痛的病因有()
以下哪种补体在血清中含量最低
在临床用药实践中,使用最为广泛的药物信息是
根据法律和宪法。下列选项中哪些事项应由全国人大决定?()
下列表述中,不符合现行消费税法律制度规定的是()。
在医学界影响深远,被誉为“医圣”的是()。
“微时代”的媒介技术革新与融合,改变和重塑着人们的审美感知方式,传统艺术审美活动的固有流程与秩序几乎被颠覆。艺术的鉴赏只需通过手指在智能手机上的简单点击或滑动即可实现,艺术接受的场所不再局限于美术馆、博物馆、剧院或影院等传统艺术空间,而是扩大至移动网络信号
在超市里常常看到牛奶装在方形的容器中出售,而碳酸饮料则常装在圆形的容器中出售。下列关于此现象的原因解释可合理的是()。
()在小学时期,儿童的自我意识正处于客观化时期,是获得社会自我的时期。
主要用于实现两个不同网络互联的设备是()。
最新回复
(
0
)