首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证: BTAB为正定矩阵的充分必要条件是r(B)=n。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证: BTAB为正定矩阵的充分必要条件是r(B)=n。
admin
2019-01-23
41
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵,试证:
B
T
AB为正定矩阵的充分必要条件是r(B)=n。
选项
答案
必要性:设B
T
AB为正定矩阵,所以r(B
T
AB)=n,又因为r(B
T
AB)≤r(B)≤n,所以r(B)=n。 充分性:因(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,故B
T
AB为实对称矩阵。 若r(B)=n,则线性方程组Bx=0只有零解,从而对任意的n维实列向量x≠0,有Bx≠0。 又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)>0。于是当x≠0,有x
T
(B
T
AB)x=(Bx)
T
A(Bx)>0,故B
T
AB为正定矩阵。
解析
转载请注明原文地址:https://jikaoti.com/ti/wgBRFFFM
0
考研数学三
相关试题推荐
求幂级数的收敛域及和函数.
计算二重积分I=,其中积分区域D={(x,y)|x2+y2≤R2}.
曲线y=lnx上与直线x+y=1垂直的切线方程为__________.
(1)试求X和Y的联合分布律;(2)X与Y是否相互独立?(3)计算协方差Cov(2X+2005,Y一2008).
假设随机变量的分布函数为F(y)=1一e—y(y>0),F(y)=0(y≤0).考虑随机变量求X1和X2的联合概率分布.
设随机变量X的分布函数FX(x)为严格单调增加的连续函数,Y服从[0,1]上的均匀分布,证明:随机变量Z=FX—1(Y)的分布函数与X的分布函数相同.
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|X|<X}=α,则X等于()
设λ1,λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1,λn的特征向量,记求二元函数的最大值及最大值点。
设f(χ)在[0,1]上连续,且满足f(0)=1,f′(χ)=f(χ)+aχ-a,求f(χ),并求a的值,使曲线y=f(χ)与χ=0,yχ0,χ=1所围平面图形绕χ轴旋转一周所得体积最小.
随机试题
若D1={a1,a2,a3},D2={1,2,3},则D1×D2集合中共有元组()个。
宪法的最高法律效力主要包括哪些方面的含义?
脑梗死CT上“模糊效应”的时间是
西医何病可参照“癫狂”辨证论治
氯甲醚可引起的法定职业肿瘤为
男性,55岁,有长期饮酒史,近期患者出现严重的记忆力障碍,遗忘、错构、虚构和定向力障碍,此为
男性,30岁,1年前下岗。近5个月来觉得邻居都在议论他,常不怀好意地盯着他,有时对着窗外大骂,自语、自笑,整天闭门不出,拨110电话要求保护。有诊断意义的症状还包括
下列维生素药物中属水溶性维生素的( )。
依据《银行业监督管理法》的规定,银行间的同业拆借市场由中国人民银行监管。()
Itisquitecommonforacompanytorecruitnewemployees.Whenacompanyseekstofillavacantjob,itmayadvertisethe【C1】__
最新回复
(
0
)