奇函数f(x)(x∈R)满足f(-3)=0,且在区间[0,2]与[2,+∞)上分别是递减和递增,则不等式(1-x2)f(x)>0的解集( )。

admin2017-12-07  34

问题 奇函数f(x)(x∈R)满足f(-3)=0,且在区间[0,2]与[2,+∞)上分别是递减和递增,则不等式(1-x2)f(x)>0的解集(  )。

选项 A、(-∞,-3)∪(1,4)
B、(-∞,-3)∪(-1,0)∪(1,+∞)
C、(-∞,-3)∪(-1,1)∪(3,+∞)
D、(-∞,-3)∪(-1,0)∪(1,3)

答案D

解析 函数f(x)g奇函数,故f(0)=0,又f(-3)=0,则f(3)=0,且函数图象关于原点对称,在区间[0,2]与[2,+∞)上分别是递减和递增,故函数图象在(-∞,-2)递增,在(-2,0)递减。图象如下:

因此(1-x2)f(x)>0时有两种情况:
①x2<1,且f(x)>0
所以

解得:x∈(-1,0)
②x2>1,且f(x)<0
所以

解得:x∈(-∞,-3)∪(1,3)
    综上,不等式(1-x2)f(x)>0的解集为x∈(-∞,-3)∪(-1,0)∪(1,3)。
转载请注明原文地址:https://jikaoti.com/ti/wFy4FFFM
0

相关试题推荐
最新回复(0)