设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明: 对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.

admin2018-05-21  12

问题 设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明:
对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.

选项

答案设F(x)=e-kxφ(x),显然F(x)在[0,η]上连续,在(0,η)内可导,且F(0)=F(η)=0,由罗尔定理,存在ξ∈(0,η),使得F’(ξ)=0,整理得f’(ξ)-k[f(ξ)-ξ]=1.

解析
转载请注明原文地址:https://jikaoti.com/ti/w0VRFFFM
0

最新回复(0)