首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(z)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)
设f(z)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)
admin
2015-07-10
30
问题
设f(z)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
(1)存在c∈(a,b),使得f(c)=0;
(2)存在ξ
i
∈(a,b)(i=1,2),且ξ
1
≠ξ
2
,使得f’(ξ
i
)+f(ξ
i
)=0(i=1,2);
(3)存在ξ∈(a,b),使得f"(ξ)=f(ξ);
(4)存在η∈(a,b),使得f"(η)一3f’(η)+2f(η)=0.
选项
答案
(1)令F(x)=∫
a
x
f(x)dt,则F(x)在[a,b]上连续,在(a,b)内可导,且F’(x)=f(x).故存在c∈(a,6),使得 ∫
a
b
f(x)dx=F(b)一F(a)=F’(c)(b一a)=f(c)(b一a)=0,即f(c)=0. (2)令h(x)=e
x
f(x),因为h(a)=h(c)=h(b)=0,所以由罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h’(ξ
1
)=h’(ξ
2
)=0, 而h’(x)=e
x
[f’(x)+f(x)]且e
x
≠0,所以f’(ξ
i
)+f(ξ
i
)=0(i=1,2). (3)令φ(x)=e
-x
[f’(x)+f(x)],φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 而φ’(x)=e
-x
[f"(x)一f(x)]且e
-x
≠0,所以f"(ξ)=f(ξ). (4)令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0, 而g’(x)=e
-x
[f’(x)一f(x)]且e≠0,所以f’(η
1
)一f(η
1
)=0,f’(η
2
)一f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)一f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
-2x
[f"(x)一3f’(x)+2f(x)]且e
-2x
≠0, 所以f"(η)一3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/vWNRFFFM
0
考研数学三
相关试题推荐
中国老龄人口已经有两亿六千万,老龄产业也可以说是一个巨大的朝阳产业。《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》指出,要实施积极应对人口老龄化国家战略。下列有关说法错误的是()。
根据《国务院关于加快建立健全绿色低碳循环发展经济体系的指导意见》,下列说法错误的是()。
2022年国务院政府工作报告指出,强化()导向,坚持“资金、要素跟着项目走”,合理扩大使用范围,支持在建项目后续融资,开工一批具备条件的重大工程、新型基础设施、老旧公用设施改造等建设项目。
2022年国务院政府工作报告指出,过去一年着力保障和改善民生,加快发展社会事业。把更多常见病、慢性病等门诊费用纳入医保报销范围,住院费用跨省直接结算率达到()。
居里夫人在做盐铀实验时,发现了一种与盐铀放射性接近,但化学性质却完全不同的未知元素。后来,她通过大量矿石放射性的实验证明这种未知元素的存在,又经过三年多的实验,她终于提炼出了这种新元素并将它命名为“镭”。镭的发现引起科学和哲学的巨大变革,为人类探索原子世界
实践充分证明,人民代表大会制度是符合中国国情和实际、体现社会主义国家性质、保证人民当家作主、保障实现中华民族伟大复兴的好制度。在中国实行人民代表大会制度是
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
设l1=(1,1),l2=(-1,1),分别求出函数z=xy在点(0,0)处沿方向l1和方向l2的二阶方向导数.
随机试题
胃大部切除术治疗十二指肠溃疡的原因是
马歇尔试验结果中,残留稳定度与稳定度单位一致。()
下面有关工程单价的描述中正确的是()。
下列不属于导流标准的是()。
在我国境内提供各种劳务的收入,均应缴纳营业税。( )
根据所给材料回答问题。(需计算后回答的问题须列出算式,小数均保留实际位数)2017年7月,甲出版社文化编辑室收到某大学教师陈明投来的一部书稿《云贵风情游》。该稿选择云贵高原若干著名旅游地区,结合自然风景描绘,风趣地介绍了当地十多个少数民族的生活习
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为__________.
Theabortiondebatehasragedsince1973,whentheSupremeCourtgaveabortionconstitutionalprotection,butthebasiclawoft
在分布式数据库中,如果用户编写程序时不必了解数据分片在各个场地的分配情况,则称该分布式数据库系统具有________透明性。
Divorcedoesn’tnecessarilymakeadultshappy.Buttoughingitoutinanunhappymarriageuntilitturnsaroundjustmightdo,a
最新回复
(
0
)