首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
admin
2020-03-10
50
问题
设矩阵A=
的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
选项
答案
矩阵A的特征多项式为 |λE-A|=[*]=(λ-2)(λ
2
-8λ+18+3a), (Ⅰ)如果λ=2是单根,则λ
2
-8λ+18+3a是完全平方,那么有18+3a=16,即a=[*] 由于矩阵A的特征值是2,4,4,而秩r(4E-A)=[*]=2,故λ=4只有一个线性无关的特征向量,从而A不能相似对角化. (Ⅱ)如果λ=2是二重特征值,则λ
2
-8λ+18+3a=(λ-2)(λ-6),那么有18+3a=12,即a=-2. 由于矩阵A的特征值是2,2,6,而秩r(2E-A)=[*]=1,故A=2有2个线性无关的特征向量.从而A可以相似对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/vPiRFFFM
0
考研数学三
相关试题推荐
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
设随机变量X与Y的相关系数为0.5,E(X)=E(Y)=0,E(X2)+=E(Y2)=2,则E[(X+Y)2]=___________。
设n元线性方程组Ax=b,其中A=当a为何值时,该方程组有无穷多解,并求通解。
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解。
设二元函数f(x,y)=计算二重积分f(x,y)dσ,其中D={(x,y)||x|+|y|≤2}。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用(I)的结果判断矩阵B—CTA-1是否为正定矩阵,并证明结论。
判断如下命题是否正确:设无穷小un~vn(n→∞),若级数收敛,则也收敛.证明你的判断.
随机试题
关于警察和国家,下列哪一说法是不正确的?()
以下不属于我国金融监管目标的是()
叶子中含叶绿素,能进行光合作用,但要通过寄主来吸收水分、矿物质的寄生称()。
杜加征
A.胰岛素B.甲状旁腺激素C.血管升压素D.醛固酮调节血钾稳态的激素主要是
患者,女,78岁,高血压30余年。测BP200/95mmHg。服用降压药物后2h,起立时摔倒,伴头晕,平卧5min后症状好转。无语言及肢体活动障碍。该患者舒张压应控制在
患者男,29岁,车祸致张力性气胸,行胸腔闭式引流,观察发现引流瓶水柱上下波动。搬动病人时应
图示绳子的一端绕在滑轮上,另一端与置于水平面上的物块B相连,若物块B的运动方程为x=kt2,其中k为常数,轮子半径为R。则轮缘上A点的加速度大小为()。
保险公估人在执业过程中的下列行为中,不应当承担民事责任的是( )。
ABC公司不适合通过债券来融资,如果该公司
最新回复
(
0
)