设A=E-ααT,其中α为n维非零列向量.证明: (1)A2=A的充分必要条件是α为单位向量; (2)当α是单位向量时A为不可逆矩阵.

admin2018-05-22  49

问题 设A=E-ααT,其中α为n维非零列向量.证明:
    (1)A2=A的充分必要条件是α为单位向量;
    (2)当α是单位向量时A为不可逆矩阵.

选项

答案(1)令αTα=k,则A2=(E-ααT)(E-ααT)=E-2ααT+kααT,因为α为非零向量,所以ααT≠o,于是A2=A的充分必要条件是k=1,而αTα=|α|2,所以A2=A的充要条件是α为单位向量. (2)当α是单位向量时,由A2=A得r(A)+r(E-A)=n,因为E-A=ααT≠O,所以r(E-A)≥1,于是r(A)≤n-1<n,故A是不可逆矩阵.

解析
转载请注明原文地址:https://jikaoti.com/ti/vCdRFFFM
0

最新回复(0)