首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明: 在(a,b)内,f(x)>0.
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明: 在(a,b)内,f(x)>0.
admin
2022-10-08
30
问题
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限
存在,证明:
在(a,b)内,f(x)>0.
选项
答案
因为[*]存在,故[*],由f(x)在[a,b]上连续,从而f(a)=0,又f’(x)>0,知f(x)在(a,b)内单调增加,故f(x)>f(a)=0,x∈(a,b).
解析
转载请注明原文地址:https://jikaoti.com/ti/upfRFFFM
0
考研数学三
相关试题推荐
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x,令P=(x,Ax,A2x).求3阶矩阵B,使A=PBP-1;
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设两函数f(x)及g(x)都在x=a处取得极大值,则函数r(x)=f(x)g(x)在x=a处()
设an为曲线y=xn与y=xn+1(n=1,2,…)所围区域的面积,记求S1,S2的值.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)T,α2=(a一1,一a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,一5a,2a+1)T.试求a、λ0的值
设函数z=z(x,y)是由方程所确定,且f可微,求
设曲线L位于xOy平面的第一象限内,L上任一点M处的切线与y轴总相交,交点记为A.已知且L过点求L的方程.
设,其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1;(Ⅰ)求f’(x);(Ⅱ)讨论f’(x)在(-∞,+∞)上的连续性.
设.(1)证明f(x)是以π为周期的周期函数;(2)求f(x)的值域.
随机试题
2017年11月6日14时30分左右,甲铁矿运输车间职工解某,在-40m水平维修硐室发现有不明烟雾,感觉头痛,就用维修硐室电话向井下调度员刘某汇报了异常情况。刘某得知情况后,用电话向矿总调度室值班员田某进行了报告,田某立即向调度主任霍某进行了汇报。14时5
景区在旅游者数量可能达到最大承载量时,未依照《旅游法》规定公告或者未向当地人民政府报告,未及时采取疏导、分流等措施,或者超过最大承载量接待旅游者的,由景区主管部门责令改正,情节严重的,责令停业整顿()。
试述麻花钻各组成部分的名称及其作用?
下列关于犯罪概念与犯罪构成的关系的描述正确的有【】
()不属于共有使用权宗地应计算土地面积的项目。
某机电安装公司承包了一造纸车间的机电安装工程,包括属于本车间的槽罐制作安装任务(含有两台碳钢压力容器)。合同规定除工艺设备外的所有材料均由施工单位采购,拖延工期要重罚,对于文明施工也提出了具体要求。由于工期特别紧张,业主要求土建基础交付安装后,在土建施工的
因客观原因造成旅游团漏接后,导游应采取的措施有()。
企业社会响应是指企业受社会伦理道德标准的引导满足社会某种普遍需要。根据上述定义,下列选项不属于企业社会响应的是()。
烟草暴利,暴利烟草,在市场环境下,商业利益往往限制着一些为国为民的好的政策的实施,你不让他们卖,他们就搞“袖中买卖”,正当途径行不通,他们就搞暗箱操作,限烟、禁烟令运行到实际商业买卖中往往根本行不通;利益驱动下,商业黑幕重重,法律法规被烟草业内部规则虚置在
A、Sheisill.B、Wedon’tknowfromthepassage.C、Thereissomethingwrongwithherfather.D、Shewenttoseeadoctor.B
最新回复
(
0
)