设函数f0(x)在(-∞,+∞)内连续,fn(x)=fn-1(t)dt(n=1,2,…). 证明:fn(x)=[*]f0(t)(x-t)n-1dt(n=1,2,…);

admin2019-11-25  76

问题 设函数f0(x)在(-∞,+∞)内连续,fn(x)=fn-1(t)dt(n=1,2,…).
证明:fn(x)=[*]f0(t)(x-t)n-1dt(n=1,2,…);

选项

答案n=1时,f1(x)=[*]f0(t)dt,等式成立; 设n=k时,fk(x)=[*]f0(t)(x-t)k-1dt, 则n=k+1时,fk+1(x)=[*]fk(t)dt=[*]f0(u)(t-u)k-1du=[*]f0(u)(t-u)k-1dt =[*]f0(u)(x-u)kdu, 由归纳法得fn(x)=[*]f0(t)(x-t)n-1dt(n=1,2,…).

解析
转载请注明原文地址:https://jikaoti.com/ti/u5iRFFFM
0

随机试题
最新回复(0)