首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T。 (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T。 (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化
admin
2021-01-28
50
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX经过正交变换化为标准形f=2y
1
2
-y
2
2
-y
3
2
,又A
*
α=α,其中α=(1,1,-1)
T
。
(Ⅰ)求矩阵A;
(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x
1
,x
2
,x
3
)=X
T
AX化为标准形。
选项
答案
(Ⅰ)显然A的特征值为λ
1
=2,λ
2
=-1,λ
3
=-1,|A|=2,伴随矩阵A
*
的特征值为μ
1
=1,μ
2
=-2,μ
3
=-2,由A
*
α=α得AA
*
α=Aα,即Aα=2α,即α=(1.1.-1)
T
是矩阵A的对应于特征值λ
1
=2的特征向量。 令ζ=(x
1
,x
2
,x
3
)
T
为矩阵A的对应于特征值λ
2
=-1,λ
3
=-1的特征向量,因为A为实对称矩阵,所以α
T
ζ=0,即x
1
+x
2
-x
3
=0, 于是λ
2
=-1,λ
3
=-1对应的线性无关的特征向量为α
2
=[*],α
3
=[*], 令P=(α
1
,α
2
,α
3
)=[*],由P
-1
AP=[*] 得[*] (Ⅱ) [*] 则f(x
1
,x
2
,x
3
)=X
T
AX,令X=QY,得f(x
1
,x
2
,x
3
)=2y
1
2
-y
2
2
-y
3
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/u4aRFFFM
0
考研数学三
相关试题推荐
设随机变量X和Y的联合分布函数为则随机变量X的分布函数F(x)为______.
设a>0,f(x)=g(x)=而D表示整个平面,则I=f(x)-g(y-x)dxdy=______.
设A=,B=,已知AX=B有解.(Ⅰ)求常数a,b.(Ⅱ)求X.
求极限
设f(x)在[0,1]上连续可导,f(1)=0,,证明:存在ξ∈[0,1],使得f’(ξ)=4.
[*]因为为奇函数,所以
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解.
(7)设随机变量X的分布函数为F(x)=0.2F1(z)+0.8F1(2x),其中F。1(y)是服从参数为1的指数分布的随机变量的分布函数,则D(X)为().
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
设f(x)连续,且tf(2x-t)dt=arctanx2,f(1)=1,求f(x)dx.
随机试题
Ablizzard(暴风雪)isasevereweatherconditioncharacterizedbylowtemperaturesandstrongwinds,greaterthan35milesperhou
在原核生物转录过程中,RNA聚合酶的哪个亚基脱落下来
急性阑尾炎最常见的症状是()
婚前保健服务应包括
传染病暴发、流行时,当地政府当立即组织力量进行防治,切断传染病的传播途径;必要时,报经上一级地方政府决定,可以采取下列紧急措施,除了
某普通合伙企业决定解散,经清算人确认:企业欠职工工资和社会保险费用10000元,欠国家税款8000元,另外发生清算费用3000元。下列几种清偿顺序中,符合合伙企业法律制度规定的是()。
[*]
支持子程序调用的数据结构是()。
A、明天上午B、这个周末C、下个星期B
Amongstthemostpopularbooksbeingwrittentodayarethosewhichareusually【B1】______assciencefiction.Hundredsof【B2】____
最新回复
(
0
)