首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量y可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量y可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
admin
2020-03-10
48
问题
设α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性无关,而向量组α
1
,α
2
,…,α
m
,γ线性相关.证明:向量y可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
选项
答案
因为向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性无关,所以向量组α
1
,α
2
,…,α
m
也线性无关,又向量组α
1
,α
2
,…,α
m
,γ线性相关,所以向量γ可由向量组α
1
,α
2
,…,α
m
线性表示,从而γ可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
解析
转载请注明原文地址:https://jikaoti.com/ti/tEiRFFFM
0
考研数学三
相关试题推荐
设X1,X2,…,Xn,…是独立同分布的随机变量序列,且均服从参数为λ(λ>1)的指数分布,记Φ(x)为标准正态分布函数,则().
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(Ⅰ)的解.其中正确的是()
下列函数在其定义域内连续的是
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设收敛,则下列正确的是().
计算二重积分,其中{(x,y)︱0≤x≤2,x≤y≤2,x2+y2≥2}。
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
设X1,X2,…,Xn是来自总体X的简单随机样本,且X的概率分布为131,其中0<θ<1,分别用n1,n2,n3表示X1,X2,…,Xn中出现1,2,4的次数,试求(Ⅰ)未知参数θ的最大似然估计量;(Ⅱ)未知参数θ的矩估计量;(Ⅲ)当样本值为1,2,
求下列数列极限:
随机试题
WhatdoShoesCanDo?Researcherssaypeoplecan【C1】________(accurate)judge90percentofastranger’spersonalitybylookin
设”chars[10];*p=s”以下不正确的表达式是()。
工程项目竣工决算的内容包括()。
下列矩阵中,正定矩阵的是()。
我国的农村银行机构主要包括()。
配送中心是从事配送业务的物流场所或组织,主要为特定的用户服务。()
特种防暴枪属于()。
Animportantfactorofleadershipisattraction.Thisdoesnotmeanattractivenessintheordinarysense,forthatisabornqua
设有课程关系模式如下:R(C#,Cn,T,Ta)(其中c}}为课程号,cn为课程名,T为教师名,Ta为教师地址)并且假定不同课程号可以有相同的课程名,每个课程号下只有一位任课教师,但每位教师可以有多门课程。该关系模式可进一步规范化为()。
Hewasonlyoneofthecandidateswhowasgoingtotaketheoraldefense.
最新回复
(
0
)