设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3经过正交变换x=Py化成f=y22+2y32,其中x=(x1,x2,x3)T,y=(y1,y2,y3)T是三维列向量,P是三阶正交矩阵,求常数a,b的值.

admin2014-10-27  58

问题 设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3经过正交变换x=Py化成f=y22+2y32,其中x=(x1,x2,x3)T,y=(y1,y2,y3)T是三维列向量,P是三阶正交矩阵,求常数a,b的值.

选项

答案根据假设条件知,变换后二次型f(x1,x2,x3)的矩阵分别为[*] 二次型f可以写成f=XTAX,f=YTBY. 由于PTAP=B,且P为正交矩阵,故PT=P-1,于是有P-1AP=B,即A~B,所以有|λI—A|=|λI—B|,即[*] 由此可得方程λ2一3λ2+(2一a2一b2)λ+(a一b)22一3λ2+2λ,从而有方程组[*] 解之得a一b=0,为所求的常数.

解析
转载请注明原文地址:https://jikaoti.com/ti/t9lfFFFM
0

最新回复(0)