首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3经过正交变换x=Py化成f=y22+2y32,其中x=(x1,x2,x3)T,y=(y1,y2,y3)T是三维列向量,P是三阶正交矩阵,求常数a,b的值.
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3经过正交变换x=Py化成f=y22+2y32,其中x=(x1,x2,x3)T,y=(y1,y2,y3)T是三维列向量,P是三阶正交矩阵,求常数a,b的值.
admin
2014-10-27
58
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
+2ax
1
x
2
+2x
1
x
3
+2bx
2
x
3
经过正交变换x=Py化成f=y
2
2
+2y
3
2
,其中x=(x
1
,x
2
,x
3
)
T
,y=(y
1
,y
2
,y
3
)
T
是三维列向量,P是三阶正交矩阵,求常数a,b的值.
选项
答案
根据假设条件知,变换后二次型f(x
1
,x
2
,x
3
)的矩阵分别为[*] 二次型f可以写成f=X
T
AX,f=Y
T
BY. 由于P
T
AP=B,且P为正交矩阵,故P
T
=P
-1
,于是有P
-1
AP=B,即A~B,所以有|λI—A|=|λI—B|,即[*] 由此可得方程λ
2
一3λ
2
+(2一a
2
一b
2
)λ+(a一b)
2
=λ
2
一3λ
2
+2λ,从而有方程组[*] 解之得a一b=0,为所求的常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/t9lfFFFM
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
Johnsonwas______unknownbeforerunningforthepresidency.
请根据所提供材料中的要求撰写一篇150词左右的英语短文。Youwanttosellsomeofyourfurniture.Youthinkafriendofyoursmightliketobuyitfromyou.
概括这段文字两个层次的大意。这段文字使用了何种写作方法?
井蛙不可以语于海者,拘于虚也;夏虫不可以语于冰者,笃于时也;曲士不可以语于道者,束于教也。概括这段文字的主旨和三个层次的大意。
及城陷,贼缚巡等数十人坐,且将戮。巡起旋,其众见巡起,或起或泣。巡曰:“汝勿怖,死,命也。”众泣不能仰视。巡就戮时,颜色不乱,阳阳如平常。这里表现出张巡怎样的性格特征?
设求出A的所有的特征值和特征向量.
问β=(4,5,5)能否表示成α1=(1,2,3),α2=(一1,1,4),α3=(3,3,2)的线性组合?
设向量组.求该向量组的秩和一个极大线性无关组.
设方阵A满足条件A’A=E,求证:A的实特征向量所对应的特征值的绝对值等于1.
计算4阶行列式的值.
随机试题
A.黄疸B.肝掌C.腹壁静脉曲张D.皮肤紫癜E.肝轻度肿大肝硬化失代偿期,内分泌紊乱的表现是
痰涂片阳性率最高的肺癌是
A.脑血管病、心脏病、恶性肿瘤B.肺结核、心脏病、恶性肿瘤C.呼吸系统疾病、急性传染病、肺结核D.恶性肿瘤、急性传染病、肺结核E.恶性肿瘤、脑血管病、呼吸系统疾病20世纪90年代以后,死亡原因居前3位的是
免疫比浊测定体系中加入何物来加速抗原抗体复合物的形成
叶柄基部横切面有5~13个分体中柱,其原植物是
有民事行为能力的公民在被宣告死亡期间实施的民事法律行为有效。()
社会总资本再生产的核心问题是()。
茶艺是一种综合性的生活艺术,但对“茶艺”的________诠释究竟是什么,却众说纷纭,即使开茶艺馆的人,也多半________。填入画横线部分最恰当的一项是:
伪造、变造________、__________、支票的,构成伪造、变造金融票证罪。
设n阶矩阵A正定,X=(x1,x2,…,xn)T.证明:二次型f(x1,x2,…,xn)为正定二次型.
最新回复
(
0
)