首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs和β1β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1β2,…,βt线性无关.
设α1,α2,…,αs和β1β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1β2,…,βt线性无关.
admin
2017-10-21
27
问题
设α
1
,α
2
,…,α
s
和β
1
β
2
,…,β
t
是两个线性无关的n维实向量组,并且每个α
i
和β
j
都正交,证明α
1
,α
2
,…,α
s
,β
1
β
2
,…,β
t
线性无关.
选项
答案
用定义证明.设 c
1
α
1
+c
2
α
2
+…+c
s
α
s
+k
1
β
1
+k
2
β
2
+…+k
t
β
t
=0,记η=c
1
α
1
+c
2
α
2
+…+c
s
sα
s
=一(k
1
β
1
+k
2
β
2
+…+k
t
β
t
),则(η,η)=一(c
1
α
1
+c
2
α
2
+…+c
s
α
s
,k
1
β
1
+k
2
β
2
+…+k
t
β
t
)=0即η=0,于是c
1
,c
2
,…,c
s
,k
1
,k
2
,…,k
t
全都为0.
解析
转载请注明原文地址:https://jikaoti.com/ti/ssSRFFFM
0
考研数学三
相关试题推荐
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设二次型f(x1,x2,x3)=(a一1)x12+(a一1)x22+2x32+21x2(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.
设且A~B.(1)求a;(2)求可逆矩阵P,使得P—1AP=B.
设A,B是正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
判断级数的敛散性.
判断级数的敛散性.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
随机试题
做内生肌酐清除率检查,试验前三日的饮食是
A、用物理方法清除物体表面的污垢B、清除或杀灭物体上一切微生物,包括细菌的芽孢C、经灭菌处理的物品D、清除或杀灭物体上除细菌芽孢外的各种病原微生物E、凡未被病原微生物污染的区域消毒()。
1岁小儿,多汗,枕秃,方颅,常发生惊厥,不伴发热。查血糖3.2mmol/L,血钙6.5mg/dl,血镁1mg/dl,血磷12mg/dl。其确切的诊断应是
施工图设计的最后一道工序是()。
施工成本目标的分解,要通过编制( )来进行。
甲、乙双方在签订合同时,乙方应甲方要求,请求丙方对乙方履行合同提供保证担保,并另行签订保证合同。该保证合同应由()。
一个小孩在临睡前会出现吵闹现象,即“闹觉”,这种诱导现象是()。
一般法是指适用于一般的法律关系主体、通常的时间、国家管辖的所有地区的法律。下列选项中属于一般法的有:
Shelly’ssnackshopwasthenamethatBrianEgemoofBadger,Iowa,appliedtohiswife’ssideofthebed.In1994Shelly,whoha
TheLewisandClarkexpedition______thetenStoryoftheLouisianaPurchaseandbeyondasfarasthePacificOcean.
最新回复
(
0
)