Despite increased airport security since September 11th, 2001, the technology to scan both passengers and baggage for weapons an

admin2020-08-21  34

问题     Despite increased airport security since September 11th, 2001, the technology to scan both passengers and baggage for weapons and bombs remains largely unchanged. Travellers walk through metal detectors and carry-on bags pass through x-ray machines that superimpose colour-coded highlights, but do little else. Checked-in luggage is screened by "computed tomography", which peers inside a suitcase rather like a CAT scan of a brain. These systems can alert an operator to something suspicious, but they cannot tell what it is.
    More sophisticated screening technologies are emerging,  albeit slowly. There are three main approaches: enhanced x-rays to spot hidden objects, sensor technology to sniff dangerous chemicals, and radio frequencies that can identify liquids and solids.
    A number of manufacturers are using "reflective" or "backscatter" x-rays that can be calibrated to see objects through clothing. They can spot things that a metal detector may not, such as a ceramic knife or plastic explosives. But some people think they can reveal too much. In America, civil-liberties groups have stalled the introduction of such equipment, arguing that it is too intrusive. To protect travellers ’modesty, filters have been created to blur genital areas.
    Machines that can detect minute traces of explosive are also being tested. Passengers walk through a machine that blows a burst of air, intended to dislodge molecules of substances on a person’s body and clothes. The air is sucked into a filter, which instantaneously analyses it to see whether it includes any suspect substances. The process can work for baggage as well. It is a vast improvement on today’s method, whereby carry-on items are occasionally swabbed and screened for traces of explosives.  Because this is a manual operation, only a small share of bags are examined this way.
    The most radical of the new approaches uses "quadrupole resonance technology".  This involves bombarding an object with radio waves. By reading the returning signals, the machines can identify the molecular structure of the materials it contains. Since every compound—solid, liquid or gas—creates a unique frequency, it can be read like a fingerprint. The system can be used to look for drugs as well as explosives.
    For these technologies to make the jump from development labs and small trials to full deployment at airports they must be available at a price that airports are prepared to pay. They must also be easy to use, take up little space and provide quick results, says Chris Yates, a security expert with Jane’s Airport Review.  Norman Shanks, an airport security expert, says adding the new technologies costs around $100,000 per machine; he expects the systems to be rolled out commercially over the next 12 months. They might close off one route to destroying an airliner, but a cruel certainty is that terrorists will try to find others.
Which of the followings is a determining factor in terms of the prospect of the screening technologies discussed in the text?

选项 A、Their efficiency.
B、Their brand.
C、Their output.
D、Their component.

答案A

解析 本题是一道细节理解题,测试考生对原文细节的正确识别和理解能力。本题答案信息来源在尾段的第一、二句,尤其是第二句。本题题干内容存在于尾段第一句,本题的答案信息来源在尾段第二句。尾段第二句的大意是:“这些技术一定要使用方便、占据空间面积小、还要能够迅速提供探测结果”。由此可以推断本题的正确选项是A。考生在阅读时对原文的词语要有准确的识别和理解能力。
转载请注明原文地址:https://jikaoti.com/ti/smq7FFFM
0

最新回复(0)