首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
甲、乙、丙三个工厂承接A和B两批完全相同的加工订单,如果甲厂和乙厂负责A订单而丙厂负责B订单,则丙厂要比甲厂和乙厂晚15天完成;如在上述条件下甲厂分配39的生产资源或者乙厂分配的生产资源用于B订单生产,则A、B两个订单同时完成。问如果合并三个工厂的生产能力
甲、乙、丙三个工厂承接A和B两批完全相同的加工订单,如果甲厂和乙厂负责A订单而丙厂负责B订单,则丙厂要比甲厂和乙厂晚15天完成;如在上述条件下甲厂分配39的生产资源或者乙厂分配的生产资源用于B订单生产,则A、B两个订单同时完成。问如果合并三个工厂的生产能力
admin
2015-05-09
26
问题
甲、乙、丙三个工厂承接A和B两批完全相同的加工订单,如果甲厂和乙厂负责A订单而丙厂负责B订单,则丙厂要比甲厂和乙厂晚15天完成;如在上述条件下甲厂分配
39的生产资源或者乙厂分配
的生产资源用于B订单生产,则A、B两个订单同时完成。问如果合并三个工厂的生产能力,第几天可以完成A订单的生产任务?
选项
A、22
B、24
C、25
D、26
答案
D
解析
由题意可知,甲厂分配的
的生产资源与乙厂分配的
的生产资源相等,用特值法,设甲厂的生产资源为3,乙厂的生产资源为5。又因为A、B加工订单完全相同,则有
,故丙厂的生产资源为6。再设A、B的订单量为a,则
,求出a=360,所求为
,则第26天可完成。
转载请注明原文地址:https://jikaoti.com/ti/sjE3FFFM
本试题收录于:
行测题库公安招警分类
0
行测
公安招警
相关试题推荐
A、 B、 C、 D、 D第一套图形中,子图1上部向右移动构成子图2,子图2上部和底部交换位置构成子图3,第二套图形中,子图1下部向右移动构成子图2,子图2上部和底部交换位置构成子图,故选D。
大拆大建已在我国城市化和城市建设中司空见惯。许多处于正常的设计使用年限之内的建筑也被强行拆除,使中国住宅的使用寿命大大缩短。住宅短命现象造成了巨大的资源浪费和环境污染。这段文字的主旨是:
A、 B、 C、 D、 C提示框中图形的规律是第一个图形所含元素的数量加上第二个图形元素数量等于第三个图形的数量。问题框中的图形也遵循此规律。故选C。
每个人在社会上生活,每天都要与人交往,经常会遇到些别人对自己无礼、无理的事,碰到些别人需要自己理解、帮助、支持的事。在这些事情面前,是宽宏大量,与人为善,还是小肚鸡肠,与人为恶,不仅是一个人道德品质修养高低的表现,而且直接影响到自己的精神世界,影响到自己的
我国目前运行最快的超级计算机——每秒峰值运算速度11万亿次的曙光4000A15日在上海超级计算中心正式启动。下列理解正确的是:
一个长方体的长、宽、高恰好是三个连续的自然数,并且它的体积数值等于它的所有棱长之和的2倍,那么这个长方体的表面积是多少?()
高房价让普通老百姓望房兴叹。专家主张我国应建立“四层次”住房体制,即高收人者购买商品房,中等收人者购买经济适用房,政府为低收入者提供廉价租房,最困难的一部分人由财政出钱减免房租,以此实现人人有房住。这一建议实质上是主张:
书法界常有字因人贵的说法,不无道理。而在颜真卿这里,却是字因人重,忠贞正直的人格为其瑰丽书法添辉,骨力遒劲的书法为其雄壮人生增彩,做人与写字__________,在颜真卿身上得到了圆满的统一。颜真卿的书法成就一直为后代__________,其人格同样颇具感
邀请:拒绝:接受
见异思迁:忠贞不二
随机试题
无尿
胃纳不佳及阴虚体弱者慎服的是
A.消化液的急性丢失,如大量呕吐、腹泻、肠瘘等B.胃肠道消化液长期持续丧失,如反复呕吐、腹泻、胆胰瘘、胃肠道长期吸引或慢性肠梗阻,钠随消化液大量丧失,补液不足或仅补充水分C.急、慢性肾功能衰竭伴少尿或无尿D.维生素D缺乏、甲状旁腺机能减退、慢性肾功能
女性,38岁,反复上腹痛伴反酸10多年,近来疼痛加剧,服抗酸药等不能缓解。近1周来上腹痛伴呕吐,呕吐量有时较大,呕吐物带有发酵味,查体:上腹部压痛,有振水音。上述病例最可能的诊断是
某单位为了企业解困经当地政府批准在无偿划拨的土地上建设网点房3000m2用于经营,2002年12月31日开始使用,6个月后将其中的2000m2出租,1000m2出售。并将出租部分向银行抵押贷款280万元,贷款期限2年,抵押率70%。2005年6月30日由于
根据《企业所得税法》的规定,在计算企业所得税应纳税所得额时,不计入收入总额的是()。
下列各项中,属于证券资产特点的有()。
在△ABC中,=()。
人生是______的,一个有着热烈的、慷慨的、天性多情的人,也许容易受他的比较聪明的同伴之愚。那些天性慷慨的人,常常因慷慨而错了主意,常常因对付仇敌过于宽大,或对于朋友过于______,而走了失着。依次填入画横线部分最恰当的一项是()。
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
最新回复
(
0
)