首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程z+lnz—=1确定并满足z(0,0)=1的函数,求.结果用fi′(0,1),fij″(0,1)表示(i,j=1,2).
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程z+lnz—=1确定并满足z(0,0)=1的函数,求.结果用fi′(0,1),fij″(0,1)表示(i,j=1,2).
admin
2020-02-28
37
问题
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程z+lnz—
=1确定并满足z(0,0)=1的函数,求
.结果用f
i
′(0,1),f
ij
″(0,1)表示(i,j=1,2).
选项
答案
u与x,y的变量依赖关系如图,其中z与x,y的函数关系由以下方程确定: z+lnz—∫
y
x
e
—t
2
dt=1. 由u=f(2x+3y,Z),有 [*] 将z+lnx—∫
y
x
e
—t
2
dt=1两边分别对x,y求偏导数有 [*] 将[*]代入(*)式可得[*],该式再对y求偏导数并将[*]的表达式代入有 [*] 当x=0,y=0时有z(0,0)=1,代入即得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/sItRFFFM
0
考研数学二
相关试题推荐
∫01xarcsinxdx=_________.
A是三阶矩阵,三维列向量组β1,β2,β3线性无关,满足Aβ1=β2+β3,Aβ2=β1+β3,Aβ3=β1+β2,求|A|.
求函数F(x)=的间断点,并判断它们的类型.
设A为4阶矩阵,满足条件AAT=2E,|A|<0,其中E是4阶单位矩阵,求方阵A的伴随矩阵A*的一个特征值.
设f(χ)在[0,1]上二阶连续可导且f(0)=f(1),又|f〞(χ)|≤M,证明:|f′(χ)|≤.
求下列不定积分:
(2013年)设封闭曲线L的极坐标方程为r=cos3θ,则L所围平面图形的面积是________.
某闸门的形状与大小如图1—3—7所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高应为多少米?
设y=f(χ)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;(2)设f(χ)在(0,1)内可导,且f′(χ)>-
随机试题
下列作品中,属于新乐府的是()
鞍上池内不包括下列哪项结构
某国有企业,因产品市场环境变化及管理体制落后,现已面临资不抵债,经法院裁定宣告破产,该企业使用土地为国有划拨土地,其国有土地使用证登记用途为工业用地,且存在抵押权,根据破产清算组提供的材料及估价人员实际勘察情况,该宗土地位于市中心繁华地段,破产清算组经与有
如图7-9所示电路中电流I为()A。
2009年1月1日,甲公司以融资租赁方式租入一项固定资产,租赁期为3年,租金总额8300万元,其中2009年年末应付租金3000万元,剩余金额在租赁期届满时进行支付。假定在租赁期开始日(2009年1月1日)最低租赁付款额的现值为6709.24万元;租赁资产
求解方程。
我国一些地方中小企业安全生产事故频发,经常导致严重的人员伤亡事故。造成这一现象的深层的和根本的原因是:安全措施没有真正到位,生产安全设备落后,严重违法违规生产,一些地方领导干部和工作人员严重失职渎职。下面哪一个选项对题干中的观点构成最弱的质疑?(
简述无效民事行为的种类及民事行为被确认无效的法律后果。
a.それでb.それにc.それともd.それでもe.それでは李さんは院生ですか、________学部生ですか。
Ihavetoarriveatthestationbefore6:00becausethetrainis______toleaveat6:00.
最新回复
(
0
)