设u(x,y)有二阶连续偏导数,且du(x,y)=(ax+y)/(x2+y2)dx-(x-y+b)/(x2+y2)dy,则( )

admin2021-12-14  32

问题 设u(x,y)有二阶连续偏导数,且du(x,y)=(ax+y)/(x2+y2)dx-(x-y+b)/(x2+y2)dy,则(          )

选项 A、a=1,b=0
B、a=0,b=1
C、a=-1,b—0
D、a=0,b=-1

答案A

解析 记P(x,y)=(ax+y)/(x2+y2),Q(x,y)=-(x-y+b)/(x2+y2),则由已知,有du/dx=P(x,y),du/dx=Q(x,y),又由d2u/dxdy=d2u/dydu,可知dP/dy=dQ/dx,即[1·(x2+y2)-(ax+y)·2y]/(x2+y2)2=-[1·(x2+y2)-(x-y+b)·2x]/(x2+y2)2解得a=1,b=0,A正确。
转载请注明原文地址:https://jikaoti.com/ti/rZhRFFFM
0

最新回复(0)