首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ
admin
2021-01-19
36
问题
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).
(Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且
f′(χ)=A,则f′
+
(0)存在,且f′
+
(0)=A.
选项
答案
(Ⅰ)取F(χ)=f(χ)-[*](χ-a) 由题意知F(χ)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得F′(ξ)=f′(ξ)-[*]=0,即 f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)对于任意的t∈(0,δ),函数f(χ)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理f′
+
(0)=[*],其中ξ∈(0,t). 由于[*]f′(t)=A,且当t→0
+
时,ξ→0
+
,所以[*]f′(ξ)=A,故f′
+
(0)存在,且f′
+
(0)=A.
解析
转载请注明原文地址:https://jikaoti.com/ti/rQARFFFM
0
考研数学二
相关试题推荐
设A为n阶可逆矩阵,A*为A的伴随矩阵,则矩阵AA*的全部特征值为_________,特征向量为_________.
当x→0时,若有ln(cos)~Axk,则A=_____________,k=_____________.
曲线上对应点t=2处的切线方程为________.
设三阶矩阵A,B满足关系A-1BA=6A+BA,且A=,则B=_________
由曲线y=lnx与两直线y=(e+1)一x及y=0所围成平面图形的面积为________.
设可导函数y=f(x)由方程∫0x+ye-t2dt=∫0xxsin2tdt确定,则=_________。
设f(x)的一个原函数为ln2x,则∫xf’(x)dx=______
(2012年试题,三)已知函数求a的值;
以y=C1eχ+eχ(C2cosχ+C3sinχ)为特解的三阶常系数齐次线性微分方程为_______.
(1997年)已知f(χ)=在χ=0处连续,则a=_______.
随机试题
造成10人以上30人以下死亡,或者50人以上100人以下重伤,或者5000万元以上1亿元以下直接财产损失的火灾属于()。
采用;收养v.a______
不符合亚急性细菌性心内膜炎的是
A.甲硝唑B.吡喹酮C.乙胺嗪D.甲苯达唑E.氯硝柳胺抗血吸虫病药
下列关于第三产程处理的叙述,错误的是
下列关于大陆法系的表述不正确的是()
伊瑞克先神庙是古典盛期()柱式的代表作。
()是指由国务院制定并发布,或者国务院有关部门拟定并经国务院批准发布,用于调整经济关系中某些方面会计关系的法律规范。
一、注意事项 1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力、解决问题能力、语言表达能力的测试。 2.作答参考时限:阅读材料40分钟,作答110分钟。 3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定资料 (
Properarrangementofclassroomspaceisimportanttoencouraginginteraction.Mostofushavenoticedhowimportantphysicalse
最新回复
(
0
)