首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=xe1-xf(x)dx(k>1). 证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ-1)f(ξ).
f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=xe1-xf(x)dx(k>1). 证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ-1)f(ξ).
admin
2018-09-20
37
问题
f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=
xe
1-x
f(x)dx(k>1).
证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ
-1
)f(ξ).
选项
答案
令F(x)=xe
-x
f(x),因 [*],F(1)=e
-1
f(1)=ηe
-η
f(η)=F(η), 故在[η,1][*][0,1]上,对F(x)运用罗尔定理,可得ξ∈(η,1)[*](0,1),使f’(ξ)=(1一ξ
-1
)f(ξ).
解析
转载请注明原文地址:https://jikaoti.com/ti/qEIRFFFM
0
考研数学三
相关试题推荐
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)一aF1(x)+bF2(x)为某一随机变量的分布函数,则有().
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在(0,+∞)内连续且单调减少.证明:∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:求
设{un},{cn)为正项数列,证明:(1)若对一切正整数n满足cnun一cn+1un+1≤0,且发散,则un也发散;(2)若对一切正整数n满足一cn+1≥a(a>0),且收敛,则un也收敛.
设(n=1,2,…;an>0,bn>0),证明:(1)若级数bn收敛,则级数an收敛;(2)若级数an发散,则级数bn发散.
随机试题
TelevisionTelevision——themostpervasiveandpersuasiveofmoderntechnologies,markedbyrapidchangeandgrowth—ismoving
几乎不引起锥体外系反应的抗精神病药物是:
A.近远中径在颌面宽而近颈部窄B.髓室顶与髓室底相距较近C.牙冠向舌侧倾斜,髓室偏向颊侧D.唇舌径在牙颈部最大E.根管较小,根管侧壁薄,仅厚1mm下颌恒磨牙开髓部位应在颌面偏向颊尖处,因为
办公建筑中,不属于服务用房的房间是:(2019年第39题)
在下列各项中,属于注册会计师及其所在的会计师事务所可依法承办的审计业务有()。
有M、N、O、P四个朋友,他们分别是音乐家、科学家、天文学家和逻辑学家。在少年时代,他们曾经在一起对未来做过预测,当时,M预测说:N无论如何也成不了科学家。N预测说:O将来要做逻辑学家。O预测说:P不会成为音乐家。P预测说:N成不了天文学家。事实上,只有逻
下列情形中,可能发生在西汉百姓生活中的是()。
理想的冠桩直径应为()。
在俄国社会主义革命取得胜利的初期,特别是实行新经济政策期间,列宁对苏维埃俄国如何建设社会主义进行了深刻的理论思考,提出了许多精辟的论述。这些论述是
A、 B、 C、 A
最新回复
(
0
)