设矩阵A=,且A3=O。 (Ⅰ)求a的值; (Ⅱ)若矩阵X满足X—XA2—AX+AXA2=E,其中E为3阶单位矩阵,求X。

admin2018-01-30  29

问题 设矩阵A=,且A3=O。
  (Ⅰ)求a的值;
  (Ⅱ)若矩阵X满足X—XA2—AX+AXA2=E,其中E为3阶单位矩阵,求X。

选项

答案(Ⅰ)A2=O,|A|=0,则[*]=0,解得a=0。 (Ⅱ)由X—XA2—AX+AXA2=E得,(E—A)X(E—A2)=E,故X=(E—A)-1(E—A2)-1。通过初等行变换计算各矩阵的逆矩阵得, [*]

解析 本题考查矩阵的计算,尤其注意通过初等行变换求逆矩阵的方法。
转载请注明原文地址:https://jikaoti.com/ti/qDQUFFFM
0

最新回复(0)