首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
admin
2018-11-23
58
问题
给定向量组(Ⅰ)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+b)
T
,β
3
=(2,1,a+4)
T
.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
选项
答案
根据题意得: r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=r(β
1
,β
2
,β
3
). [*] 当a+1=0时,r(α
1
,α
2
,α
3
)=2,而r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3,因此(Ⅰ)与(Ⅱ)不等价. 当a+1≠0时,r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3. 再来计算r(β
1
,β
2
,β
3
). [*] 则r(β
1
,β
2
,β
3
)=3(与a无关).于是a+1≠0时(Ⅰ)与(Ⅱ)等价.
解析
转载请注明原文地址:https://jikaoti.com/ti/q81RFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续可导,f(a)=f(b)=0,且f2(x)dx=1,则xf(x)f′(x)dx=____________.
函数u=x2一2yz在点(1,一2,2)处的方向导数最大值为___________.
一容器由y=x2绕y轴旋转而成.其容积为72πm3,其中盛满水,水的比重为μ,现将水从容器中抽出64πm3,问需作功多少?
设函数f(x)可导,且f(0)=0,F(x)=∫0xtn-1f(xn一tn)dt,试求
设ex-ysin(x+z)=0,试求
设有向量α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b—2,a+2b)T,β=(1,3,一3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3惟一地线性表示,并求出表示式;(
设随机变量X在区间(一1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
设总体X在区间(μ一ρ,μ+ρ)上服从均匀分布,从X中抽得简单样本X1,…,Xn,求μ和ρ(均为未知参数)的矩估计,并问它们是否有一致性.
对随机变量X,已知EekX存在(k>0常数),证明:
设随机变量(U,V)在以点(-2,0),(2,0),(0,1),(0,-1)为顶点的四边形上服从均匀分布,随机变量求X和Y的相关系数;
随机试题
近几十年来,减少了公务员编制的国家是
女性,40岁。入院2周前曾发热,流清水鼻涕,在本院门诊拟诊“上呼吸道感染”。昨天患者感四肢末端发麻、乏力。入院体检:神志清,双侧额纹减少,双侧眼裂闭合欠佳,双侧鼻唇沟浅,露齿困难。双上肢肌力3级,双下肢肌力4级,肌张力低下,双侧肱二头肌反射(+),膝反射(
男性,患者,19岁。大学生。近月来常出现胸闷、心悸、气短,尤以运动后明显,伴发热、出汗、心跳加快、疲乏无力,常出现头痛。发病前3周有鼻塞、流涕等感冒症状。无其他疾病史。查体:T37.3℃,P102次/分,R21次/分,BP120/84mmHg。神清,心率1
照片光学比比度(K)与X线对比度(Kx)的正确关系式是
感知综合障碍不包括
治疗抗肿瘤药引起的恶心、呕吐等不良反应,可选用的止吐药物是()。
西方古典经济学家最早论述土地问题的是英国经济学家(),他于17世纪末首先提出了()的概念。
背景材料:某项目经理部中标承建某道路工程。原设计是水泥混凝土路面,后因拆迁延期,严重影响工程进度,但业主要求竣工通车日期不能改。为满足竣工通车日期要求,业主更改路面结构,将水泥混凝土路面改为沥青混凝土路面。对这一重大变更,项目经理在成本管理方面采取了如下
自我实现预言是指我们对他人的期望会影响到对方的行为,使得对方按照我们对他的期望行事。下列属于自我实现预言的是()。
OzzoApplianceswillbeginanadvertisingcampaignforitsnewestlineofkitchenequipment______thelicensefromthepatentoff
最新回复
(
0
)