设f(χ)在[a,+∞)上连续,f(a)<0,而f(χ)存在且大于零.证明:f(χ)在(a,+∞)内至少有一个零点.

admin2017-09-15  38

问题 设f(χ)在[a,+∞)上连续,f(a)<0,而f(χ)存在且大于零.证明:f(χ)在(a,+∞)内至少有一个零点.

选项

答案令[*]f(χ)=k>0,取ε0=[*]>0,因为[*]f(χ)=k>0,所以存在X0>0,当χ≥X0时,有|f(χ)-k|≤[*],从而f(χ)≥[*]>0,特别地,f(X0)>0,因为f(χ)在[a,X0]上连续,且f(a)f(X0)<0,所以存在ξ∈(a,X0),使得f(ξ)=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/pZdRFFFM
0

最新回复(0)