首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx,其中二次型矩阵A的主对角元素的和为3。AB=O,其中 (Ⅰ)用正交变换化二次型为标准形,并求所做的正交变换; (Ⅱ)求该二次型的具体表达式。
设二次型f(x1,x2,x3)=xTAx,其中二次型矩阵A的主对角元素的和为3。AB=O,其中 (Ⅰ)用正交变换化二次型为标准形,并求所做的正交变换; (Ⅱ)求该二次型的具体表达式。
admin
2019-01-25
37
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax,其中二次型矩阵A的主对角元素的和为3。AB=O,其中
(Ⅰ)用正交变换化二次型为标准形,并求所做的正交变换;
(Ⅱ)求该二次型的具体表达式。
选项
答案
根据已知条件[*],因此矩阵B的3个列向量均为A的对应于特征值A=0的特征向量,其中 β
1
=(1,2,1)
T
,β
2
=(-2,1,0),2β-β=(4,3,2)
T
, 故λ=0至少为矩阵A的二重特征值。 根据A的主对角元素的和为3可得A还有一个特征值为3,因此属于矩阵A的特征值分别为0,0,3。矩阵A是一个实对称矩阵,因此属于特征值3的特征向量与属于特征值0的两个特征向量均正交,可得方程组[*]解得β
3
=(x
1
,x
2
,x
3
)
T
=(1,2,-5)
T
。 故存在正交变换x=Qy,其中 [*]
解析
本题考查化二次型为标准形。第一问通过矩阵方程及主对角线元素的和可得出矩阵A的特征值,利用属于不同特征值的特征向量正交的性质求出A的所有特征向量,从而得出正交矩阵。第二问利用第一问的逆向变化计算矩阵的乘积即可得出矩阵A的具体形式。
转载请注明原文地址:https://jikaoti.com/ti/pOBRFFFM
0
考研数学三
相关试题推荐
求解微分方程—y=x2+y2.
求解微分方程.
求解微分方程+x+sin(x+y)=0.
设实矩阵A=(aij)n×n的秩为n一1,αi为A的第i个行向量(i=1,2,…,n).求一个非零向量x∈Rn,使x与α1,α2,…,αn均正交.
设矩阵A3×3满足A2=E,但A≠±E.证明:[r(A—E)一1][r(A+E)一1]=0.
计算二重积分I=,其中积分区域D={(x,y)|x2+y2≤R2}.
求二重积分I=(x+y)2dxdy,其中积分区域D={(x,y)|0≤ay≤x2+y2≤2ay,a>0}.
设函数f(x)、g(x)均可微,且满足条件u(x,y)=f(2x+5y)+g(2x一5y),u(x,0)=sin2x,u’y(x,0)=0.求f(x)、g(x)、u(x,y)的表达式.
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x一1)y"一(2x+1)y’+2y=0的两个解,若u(一1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
设f(x)在[a,b]上连续,在(a,b)内可导,又b>a>0,试证:存在两点ξ,η∈(a,b),使得f’(ξ)(b一a)=ηf’(η)(lnb—lna).
随机试题
支气管哮喘发作时,最有诊断意义的体征是()
某水利水电工程施工企业在对公司各项目经理部进行安全生产检查时发现如下情况:事件1:公司第一项目经理部承建的某泵站工地,夜间进行泵房模板安装作业时,由于部分照明灯损坏,安全员又不在现场,一木工身体状况不佳,不慎从12m高的脚手架上踩空直接坠地死亡。
投资活动产生的现金流量包括()等。
定向资产管理合同由证券公司、证券登记结算机构和客户三方共同签署。
美育即美学教育,是全面发展教育的有机组成部分,主要是由教师通过各种美的形式和内容,引导学生获得感受美、鉴赏美和创造美的能力的教育活动。一般来说,学校美育实施的途径主要包括()
某次数学竞赛设一、二等奖。已知:(1)甲、乙两校获奖的人数比为6:5;(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的60%;(3)甲、乙两校获二等奖的人数之比为5:6。问甲校获二等奖的人数占该校获奖总人数的百分之几?
在VisualFoxPro中修改数据库、表单和报表等组件的可视化工具是()。
下列叙述中正确的是
Scientistsestimate______(还要过很多年这种药才能用在人身上).
A、Theyarebemoredifficulttoquitforsmokers.B、Theyarenotassafeastraditionalcigarettes.C、Theirmarkethasgreatpot
最新回复
(
0
)