设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1.0)T,ξ3=(0,l,1,0)。是(I)的一个基础解系,η1=(0,1,0,1)T,η=(1,1一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.

admin2017-10-21  26

问题 设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1.0)T,ξ3=(0,l,1,0)。是(I)的一个基础解系,η1=(0,1,0,1)T,η=(1,1一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.

选项

答案现在(I)也没有给出方程组,(I)有一个基础解系ξ1,ξ2,ξ3,c1η1+c2η2满足(I)的充分 必要条件为c1η1+c2η2能用ξ1,ξ2,ξ3线性表示,即r(ξ1,ξ2,ξ3,c1η1+c2η2)=r(ξ1,ξ2,ξ3).于是可以通过计算秩来决定c1,c2应该满足的条件: [*] 于是当3c1+c2=0时c1η1+c2η2也是(I)的解.从而(I)和(Ⅱ)的公共解为:c(η1—3η2),其中c可取任意常数.

解析
转载请注明原文地址:https://jikaoti.com/ti/pMSRFFFM
0

最新回复(0)