首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)=,F(χ)=∫0χ(t)dt,则F(χ)在[0,2]上
设f(χ)=,F(χ)=∫0χ(t)dt,则F(χ)在[0,2]上
admin
2020-12-10
32
问题
设f(χ)=
,F(χ)=∫
0
χ
(t)dt,则F(χ)在[0,2]上
选项
A、有界,不可积.
B、可积,有间断点.
C、连续,有不可导点.
D、可导.
答案
C
解析
不必求出F(χ).
这里f(χ)在[0,2]上有界,除χ=1外连续,χ=1是f(χ)的跳跃间断点.由可积性的充分条件
f(χ)在[0,2]上可积,再由基本定理
F(χ)在[0,2]上连续.故A,B不对.
进一步考察F(χ)的可导性.当χ≠1时F′(χ)=f(χ),又χ=1是f(χ)的跳跃间断点,则F(χ)在点χ=1处不可导.故应选C.
转载请注明原文地址:https://jikaoti.com/ti/pIARFFFM
0
考研数学二
相关试题推荐
[*]
设二次型f(x1,x2,x3)=ax12+ax22+ax32+2x1x2+2x1x3+2x2x3是正定的,则()
设A是m×n矩阵,B是n阶可逆矩阵,矩阵A的秩为r,矩阵C=AB的秩为r1,则()
已知函数y=a|x|与y=x2所围成的图形的面积为9,则a=______。
设函数f(χ)具有一阶导数,下述结论中正确的是().
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成平面图形绕x轴旋转一周的旋转体体积最小.
[2000年]已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
设三元线性方程组有通解求原方程组.
设f(u,v)具有连续偏导数,且满足f’(u,v)+f’(u,v)=uv.求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解.
随机试题
一矿工因矿山倒塌,右上肢被压于矿石下2小时,出现右手垂腕、垂指,虎口处感觉减退,电生理检查正常,诊断为桡神经损伤。其损伤类型为
患者女,6岁。体检发现胸骨左缘第3肋间粗糙收缩期杂音伴震颤,第二心音亢进伴分裂。最可能的诊断是
定期考核不合格的医师暂停执业活动期满,再次考核仍不合格的()
商业秘密是指( )。
在质量控制图中,下列情况,生产过程处于正常的有( )。
商业承兑汇票到期无力偿付时,企业应将“应付票据”()。
—It’salongtimesinceIsawmysister.—______herthisweekend?
一直以来,世界音乐界认为中国没有多声部的和声艺术,复调音乐仅存于西方。上个世纪50年代,侗族大歌被中国著名音乐家郑律成偶然发现。1986年贵州侗歌合唱团赴法国演出时引起轰动,音乐界惊叹这是中国音乐史上的重大发现,从此改变了中国没有复调音乐的说法。侗族大歌“
月食发生时:
2004─2008年我国文化产业增加值分别为3340亿元、4216亿元、5123亿元、6412亿元、7600亿元,逐年大幅度攀升,平均增长速度高达17%以上,比同期GDP增值高出10个百分点左右,不仅高于传统产业的增长速度,而且还高于同为朝阳产业的电子
最新回复
(
0
)