设函数f(x,y)具有一阶连续偏导数,且df(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=________.

admin2022-11-28  9

问题 设函数f(x,y)具有一阶连续偏导数,且df(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=________.

选项

答案xyey

解析 f′x=yey,f′y=x(1+y)ey.由于f(x,y)=∫yeydx=xyey+c(y),因此
 f′y=xey+xyey+c′(y)=xey+xyey,则c′(y)=0,得c(y)=C.又f(0,0)=0,可得C=0·
 因此f(x,y)=xyey
转载请注明原文地址:https://jikaoti.com/ti/pD2iFFFM
0

最新回复(0)