首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
admin
2018-04-08
70
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2。α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为三阶单位矩阵。
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)由Aα
1
=α
1
得 A
2
α
1
=Aα
1
=α
1
, 进一步 A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
—4A。α
1
+α
1
=α
1
-4α
1
+α
1
=-2α
1
, 从而α
1
是矩阵B的属于特征值一2的特征向量。 由B=A
5
-4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=-2,得B的三个特征值为μ
1
=-2,μ
2
=1,μ
3
=1。 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又A为对称矩阵,得B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。所以α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解(1,-1,1)[*]=0,其基础解系为 [*] 即B的全部特征值的特征向量为: [*] 其中k
1
是不为零的任意常数,k
2
,k
3
是不同时为零的任意常数。 (Ⅱ)令P=(α
1
,α
2
,α
3
)= [*] 得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/p3VRFFFM
0
考研数学一
相关试题推荐
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设X1,X2,…,Xn+1是来自正态总体N(μ,σ2)的简单随机样本,设已知,则k,m的值分别为()。
设A是三阶矩阵,b=[9,18,-18]T,方程组AX=b有通解k1[-2,1,0]T+k2[2,0,1]T+[1,2,-2]T,其中k1,k2为任意常数,求A及A100。
设n阶方阵A的每行元素之和为a,|A|≠0,则a≠0;
求椭球面x2+2y2+z2=22上平行于平面x-y+2z=0的切平面方程。
an和bn符合下列哪一个条件可由发散()
设A和B为任意两不相容事件,且P(A)P(B)>0,则必有()
讨论函数f(x)=在x=0处的连续性与可导性.
讨论函数f(x)=的连续性.
随机试题
A.奉献知识、维护健康B.持续提高、注册执业C.行为自律、维护形象D.热心公益、普及知识执业药师参加有益于公众的药事活动,大力宣传和普及安全用药知识和保健知识,提供药学服务,体现了
心脏自身的血液供应主要来源于
挡土灌注桩适用于()等情况。
电子转单后,报检人凭报检单号、转单号、密码在口岸检验检疫机构申请换领《出境货物通关单》。( )
为保证账账相符,应做的工作有()。
好像上天在铺排这个仪式时突然想到要补上一个代表,让蠕动于山川间的渺小生灵占据一角观礼。被选上的当然是女性,正当妙龄,_________,人类的真正杰作只能是她们。人们在她身上倾注了最_________的传说,好像下决心让她_________世间的至美,好与
小王、小李、小张三人决定各自开车自驾游从S市出发前往L市。小张最先出发,若小李比小张晚出发10分钟,则小李出发后40分钟追上小张;若小王又比小李晚出发20分钟,则小王出发后1小时30分钟追上小张;假设S市与L市相距足够远,且三人均匀速行驶,则小王出发后(
简述危害结果在定罪量刑中的作用。
使用300dpi的扫描分辨率扫描一幅2英寸×2.5英寸的黑白图像,可以得到一幅(10)像素的图像。
Shehadashy,retiringsidetoherpersonalitythatwascompletelyatoddswithherpublic______.
最新回复
(
0
)